# Modeling of the NSTX First Plasmas with the Tokamak Simulation Code (TSC)

### S. C. Jardin

in collaboration with

#### J. Menard, C. Kessel, S. Kaye PPPL



# **Tokamak Simulation Code (TSC)**



PF coil with circuits and feedback systems



• TSC models the evolution of a <u>free-boundary</u> axisymmetric toroidal plasma on resistive and energy confinement time scales.

• The plasma equilibrium and field evolution equations are solved on a two-dimensional Cartesian grid....fluxes are continuous

• The surface-averaged transport equations for the pressures and densities are solved in magnetic flux coordinates using matrix implicit method

- An arbitrary transport model can be used,
- Neoclassical-resistivity, bootstrap-current, auxiliary-heating, current-drive, alpha-heating, radiation, pellet-injection, sawtooth, and ballooning-mode transport models are all available.
- As an option, circuit equations are solved for all the poloidal field coil systems with the effects of induced currents in passive conductors included.
- Realistic feedback systems can be defined to control the time evolution of the plasma current, position, and shape.
- A halo-region can be included, and the halo current is computed as part of the calculation

### TSC can be run in several modes

#### Either

p(,t) input

n(,t) input

Z(,,t) input

 $I_i$  (t) input or read from experimental data file

full device with no up/down symmetry

#### Or

- p( ,t) calculated from transport equation
- n( ,t) calculated from density evolution equation
- Z( ,t) calculated from impurity ionization physics
- $I_i(t)$  calculated from circuit equations with feedback
- impose symmetry about the midplane

Refs: NF **33** (1993) p. 371 NF **34** (1994) p. 1145



# **Tokamak Simulation Code (TSC)**

TSC has always been project driven. Each capability was added because there was no other code available to provide the needed result:

- S-1: inductive formation of spheromaks using flux core
- PBX- the effect of strong shaping on plasma axisymmetric stability, disruption forces on the passive stabilizers, volt-second benchmarking, CD experiments
- TCV- design of a tokamak with a flexible shaping system, doublet formation
- CIT/Ignitor volt-second consumption, disruption effects, transient ignition
- DIII-D shape control, VDEs, volt-second benchmarking
- BPX burn control feedback, divertor sweeping
- TPX vertical control, shape control, plasma scenarios
- ITER volt-second consumption, shape control, plasma disturbances
- TFTR volt-second benchmarking, impurity injection experiments



#### **NSTX Vessel model in TSC**



• vessel subdivided into 6 different groups with different resistances

• conductivities matched with more detailed vessel model of Menard to give correct current distribution in steady state

• good agreement with vessel current vs time for shots without plasma

• reasonable agreement with flux loops...looking into calibration



## **NSTX shot 100194**

- no plasma
- pre-programmed coil currents in OH, PF3, PF5 (same as plasma shot 100193)
- measurements of total vessel current, coil currents, 23 flux loops vs time
- agreement with simulation to about 5%..some question about synchronization









#### NSTX Vessel currents without plasma

## **NSTX shot 100193**

- with plasma
- pre-programmed coil currents in OH, PF3, PF5 (same as no-plasma shot 100194)
- measurements of total vessel current, coil currents, 23 flux loops vs time
- some offset in the timing of the coil and vessel currents
- differences in simulation/exp may be due to MHD or runaways
- note plasma current peaks ~10ms before end of OH ramp







#### **<u>NSTX shot 100193</u>**: Toroidal field constant in time.





#### **<u>NSTX shot 100193</u>**: Current density





### **<u>NSTX shot 100193</u>**: T<sub>e</sub> profile





#### **NSTX shot 100193: Electron Density**





#### **NSTX shot 100193:**





#### **NSTX shot 100193:**





NSTX physics meeting 7/21/99 SC

### **NSTX shot 100193:**



Superposition of plasma/vacuum interfaces for 0.0 < t < 0.12 sec





# Some Physics Highlights of the TSC Modeling

- Some questions about calibration and timing of flux and current measurements
- Resistive volt-sec consumption was "small" due to rapid current rise time
  - $\qquad _{\rm R}({\rm poynting}) = C_{\rm E}\,\mu_0\,R_0\,I_{\rm P}$
  - here  $C_E = .35$  at end of current ramp (normally > .45 for full resistive profiles)
  - corresponds to hollow current profile with l<sub>i</sub> still increasing
- No radial control was needed!
  - Implications for radial control system
- Plasma current resistive decay set by carbon radiation
  - insensitive to concentration
- Predictions for full flux-swing 1MA ohmic shots



Numerical experiments to study radial control in NSTX:

- Start with 300 ka equilibrium NSTX plasma centered in VV
  - turn on "plasma current feedback system" to keep current constant (maximum loop voltage 3.0 V)
  - change current in PF5 linearly over 10 ms to new value
  - (1) <u>increase</u> vertical field strength by  $\sim 40\%$
  - (2) repeat but <u>decrease</u> vertical field strength



NSTX physics meeting 7/21/99 SC

10 ms 树

#### (1) <u>increase</u> vertical field strength by $\sim 40\%$







(1) <u>increase</u> vertical field strength by ~40% (cont.)

•  $R_0$ , a decreases by 25% and 29%



#### (2) <u>decrease</u> vertical field strength by $\sim 25\%$



#### (2) <u>decrease</u> vertical field strength by ~25% (cont.)





#### Summary of radial control experiments:



NSTX should be much easier to control on inside limiter





### Predictions for full flux-swing 1 MA ohmic shots



## Predictions for full flux-swing 1 MA ohmic shots

Predictions for full flux-swing 1 MA ohmic shots

### Conclusions:

- NSTX should get 1 MA purely inductively if OH coil can swing from +25 kA to -18 kA
- Fully relaxed current profile with 0.6 W in plasma takes a larger OH swing (+25 kA to -30 kA)
- NSTX "natural" current ramp time for 1 MA is about 300 ms
  - faster will lead to hollow current profiles
  - slower will consume excess V-Sec

