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The major radius dependence of Alfvén mode
stability is studied by creating plasmas with
similar minor radius, shape, magnetic field (0.5 T),
density (n, ~ 4 x 10 m=3), electron tempera-
ture (1.0 keV) and beam-ion population (near-
tangential 80 keV deuterium injection) on both
NSTX and DIII-D. The major radius of NSTX
is half the major radius of DIII-D. The super-
Alfvénic beam ions that drive the modes have
nearly identical values of v/v4 in the two de-
vices. The plasma current was varied to match
either the edge g or the beam-ion banana width.
Observed beam-driven instabilities include toroidicity-
induced Alfvén eigenmodes (TAE) and com-
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pressional Alfvén eigenmodes (CAE). Analysis
indicates that the stability threshold for the TAE
is similar in the two devices but the most un-
stable toroidal mode number n increases with
major radius.

This work was funded by General Atomics subcontract SC-G903402 under
U.S. Department of Energy contract DE-AC03-99ER54463 and DE-FGO03-

02ER54601.



Alfven Mode Similarity Experiment

Goals: Match NSTX field and shape to study R dependence.
(The beams are similar, so this matches vp/va.)
Measure stability threshold.

Measure most unstable toroidal mode number n.
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Motivation

e Larger gaps in the Alfvén continuum in a
spherical tokamak (ST). Is it more unsta-
ble? Does the transition from normal modes
to energetic particle modes occur at higher
beta?

e The stronger field variation in a ST alters
the particle drifts. Does this alter the reso-
nances”’

e Major radius scaling of the most unstable
mode—important for prediction of a “sea’ of
unstable modes in a burning plasma exper-
iment.

e Necessary to avoid Alfvén modes in a ther-
mal confinement similarity experiment.



The Fast-lon Instability Zoo
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Beam-ion Orbits Span Most of the Plasma

Neutral
Beams




FREQUENCY (kHz)

A typical 0.6 T DIII-D Discharge
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FREQUENCY (kHz)

A typical NSTX Discharge
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How do we distinguish between a
bounce-resonance fishbone and a TAE?

e A complication in the interpretation of the
experiment is the appearance in NSTX of
modes that may be bounce-resonance fish-
bones (GP1.109) with frequencies that are
indistinguishable from the TAE.

e Are these really different modes? Or is non-
linear saturation just different? (We aren’t
sure. )

e Adopt conservative criteria for a “TAE” in
this study:

1. Frequency in TAE band
2. Narrow linewidth

3. Simultaneous appearance of higher n lines
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f (kHz)

Three Linewidths in this Shot (~2, 10, and 30 kHz)
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Classic “TAE” Spectral Feature in
Both Devices
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e Many NSTX discharges have a n = 1 spec-
tral feature with f ~ frag thatis ~ 10 kHz
wide—possibly a bounce-resonance fishbone.

e Use narrow line & coexistence of other n
numbers as TAE signature.

e For DIII-D, inferred frequency in plasma frame
~ 80% of nominal TAE frequency.

e Classic “chirping modes” (f =~ %fTAE, Af/f~
50%, ~ 1 ms bursts, n = 1, 2 or 3) also oc-
cur on most NSTX discharges.
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Similar TAE Thresholds
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e One steady 80 keV beam is usually unstable
in both devices.

® Bpeam X (Neutrons)/(density * volume x
B?).
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TAE Mode Number Scales as Expected
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e Theoretically, the most unstable toroidal un-
stable mode occurs when kgps ~ 1, or n ~
a/(psq*) with no explicit dependence on R.
Fu & Cheng, Phys. Fluids B4 (1992) 3722; Breizman & Sharapov,

Plasma Phys. Cont. Fusion 37 (1995) 1057.

e The new data expand the inter-machine database.

Heidbrink, Phys. Plasmas 9 (2002) 2113.
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ALPHA DRIVE
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Stability Analysis with the HINST Code

e T'wo representative discharges are analyzed

by TRANSP.

e The HINST code is a non-perturbative, high-
n code that performs a local stability analy-

sis. (Global effects are likely to be important
in NSTX, however).

e HINST predicts TAE instability in both dis-
charges and comparable growth rates.

e The predicted frequency is consistent with
experiment.

e The prediction for most unstable toroidal
mode number is close to the experimental
value in both cases.
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TRANSP profiles for Discharges Analyzed by

HINST
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HINST predicts TAE instability in the Core
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HINST predicts n = 2 for NSTX; n<6 for

DIII-D
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Conclusions

e Made 0.52 T discharge on DIII-D and ap-

proximately matched shapes. Future simi-
larity experiments will be easier.

e Chirping modes common on NSTX but not
observed on DIII-D. Why? Larger shear?
Larger gap? Will calculate radial depen-
dence of orbital frequencies.

e Empirical TAE thresholds comparable; con-
sistent with theory:.

e TAE n number larger in DIII-D as expected.
Scaling law works.

e Observed CAE activity in DIII-D. Hope to
study CAEs quantitatively in the next cam-

paign.
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