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NSTX Preparing for Active Stabilization of High 3

Global MHD Instabilities

® Motivation

Resistive wall mode (RWM) identified and associated with global
rotation damping

Beta collapse can follow rotation damping when B > By no.wall

® Approach

Examine physics of passive stabilization

Enhance mode detection system (A. Sontag, talk KO1.005)
Study rotation damping mechanisms (W. Zhu, poster LP1.013)
Determine impact of rapid rotation on equilibrium

Design and implement active feedback stabilization system




NSTX plasmas operate in wall-stabilized space
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Rapid rotation dampmq before 3 collapse at B, <0.4T
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® Rotation damping rate more than 5 times greater vs. B < By no-wal
® Global F,damping mechanism rather than localized, resonant effect
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(quantitative experimental comparison - W. Zhu, poster LP1.013)




Critical rotation frequency depends on _BN/_BN_Nowa”
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Plasma stabilized above {3 ;. yaifor 18 1,4, (B, > 0.4T)
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NSTX EFIT reconstructions now using T;, Z 4 profiles, and fit to

plasma toroidal rotation

Poloidal flux and pressure
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Exact rotation
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A few thousand
shot*times run

Estimate for Py,
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Significant drop In
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Active control may sustain 68% margin above By.o-wai

Growth rate (s1)

EXx-vessel RWM control coils
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External control coil design with realistic

geometry

Internal control coil design computed to
reach ABy = 94%

(Equilibria used have By, ,.war = 2-1; Bywar = 6-9)

VALEN model of NSTX

(cutaway view)
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Exterior control coil can provide adequate stabilizing field
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Active mode control modeling shows mode stabilization

4— Start feedback
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Preparation for active feedback stabilization
research in high (3, ST plasmas has begun

Passive stabilization above ideal no-wall (3 limit by up to 35%
Improvement in plasmas with highest 3, up to 6.5; 3/l = 9.5

Rapid rotation damping/f3 collapses at 3\ > By no.wan 8Nd lower B,
Global, non-resonant damping mechanism associated with RWM
Unlike slower, localized, diffusive damping observed with island locking

Plasmas passively stabilized for > 18 1, at increased B,
n =1 RWM not observed; n = 2 computed unstable

Toroidal rotation now included in equilibrium reconstructions
Large shift of core pressure contours from magnetic surfaces
Reconstructed stored energy essentially unchanged

Ex-vessel active control coil design chosen for initial feedback system
Targeting sustained operation at AR, = 68%




Supporting slides follow




Maximum circuit time delay to allow feedback
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T, perturbation measured during RWM
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NSTX EFIT reconstructions now using T;, Z 4 profiles, and fit to
plasma toroidal rotation

Poloidal flux and pressure

® Exact rotation
solution fitting total
and dynamic plasma
pressure at (R, Z=0)

A few thousand
shot*times run

Estimate for Py,

® Stored energy
05 10 15 20 with/without V¢ =
T i R(m) +/- 3%

108420 ]
t=0.403 s , P (R

)a = 8%

pmax aX|s

® Significant drop In
Xmag” @nd X, even
though 50% more P
channels and
smaller error bars

108420

0.403000 ‘11 510 15 20

R(m)

8 1.0 12 14 1-6R(m) (special thanks to L. Lao)




