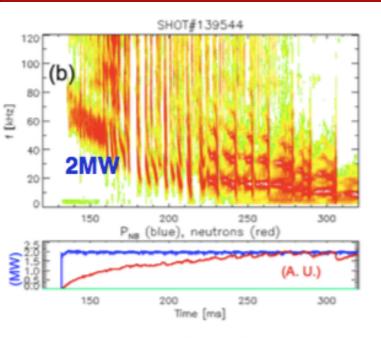
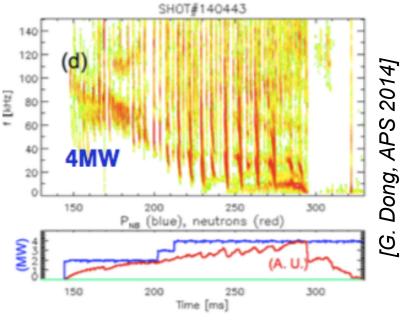


NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Collaboration on NSTX-U Milestone R18-4: Optimize energetic particle distribution function for improved plasma performance


M. Podestà and EP-TSG PPPL


November 22th, 2017

Goal: develop/test model for EP transport by fishbones and kinks for TRANSP

- R18-4: "Validation of the 'kick model' for scenarios with unstable fishbones will be conducted in collaboration with MAST-U"
 - Start from 'kick model' infrastructure
 - MHD modeling to get mode structure for kink/fishbones
 - Use particle following code (ORBIT) to get transport probability
 - Test in TRANSP, validate against data from neutrons, neutron camera, Charged Fusion Product array, perhaps FIDA
- MP will do initial implementation/tests, then export to Culham
- After initial tests, MAST-U can expand analysis & validation work
- Status: have contacts at MAST-U, discussing target scenario for tests, data format for inputs

Fishbones, LLM/kinks can strongly affect ramp-up & early flat-top phases

- Large β_{fast}/β_{th} , $q_{min} \rightarrow 1$ - Strong drive for instabilities
- Clear effect on neutron rate, stored energy -> decrease in performance
- Developing time-dependent simulation capabilities is first step in discharge optimization
 Model validation is key aspect
 Data already available from
 - NSTX/NSTX-U, MAST

