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Abstract

Tokamaks are sensitive to deviations from axisymmetry as small as δBx/B ∼ 10−4. These

non-axisymmetric perturbations greatly modify plasma confinement and performance by either

destroying magnetic surfaces with subsequent locking or deforming magnetic surfaces with asso-

ciated non-ambipolar transport. The Ideal Perturbed Equilibrium Code (IPEC) calculates ideal

perturbed equilibria and provides important basis for understanding the sensitivity of tokamak

plasmas to perturbations. IPEC calculations indicate the ideal plasma response, or equivalently

the effect by perturbed plasma currents is essential to explain locking experiments on NSTX and

DIII-D. The ideal plasma response is also important for Neoclassical Toroidal Viscosity (NTV) in

non-ambipolar transport. The consistency between NTV theory and magnetic braking experiments

on NSTX and DIII-D can be improved when the variation in the field strength in IPEC is coupled

with generalized NTV theory. These plasma response effects will be compared with the previous

vacuum superpositions to illustrate the importance. Plasma response based on ideal perturbed

equilibria, however, can be inconsistent when currents associated with a toroidal torque are com-

parable to ideally perturbed currents, as briefly discussed with the observation of the expected

shielding by torque in NSTX.
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I. INTRODUCTION

Tokamaks confine toroidal plasmas to axisymmetric magnetic field, but a small non-

axisymmetric field always exists due to the defects of primary magnets. It has been shown

that the significant degradation of performance in tokamak plasmas can occur only with

non-axisymmetry as small as δBx/B0 ∼ 10−4 [1–5]. This is problematic since tokamaks can

never be built without such a small error. Interestingly, such a small distortion of tokamak

plasmas can be beneficial. Recent experiments on Edge Localized Modes (ELMs) have

shown that non-axisymmetry as small as δBx/B0 ∼ 10−4 can greatly change ELM behaviors

[6–8], which is critical to avoid severe damages by ELMs to plasma-facing components.

These observations indicate that tokamaks are very sensitive to small non-axisymmetric

perturbations, and thus must be controlled within δBx/B0 ∼ 10−4 to improve tokamak

plasma performance.

One of standard approximations when describing tokamak plasmas with small non-

axisymmetry is to superpose the non-axisymmetric external field δ ~Bx onto the equilibrium

magnetic field ~B0. This approximation essentially assumes that the field δ ~Bp from perturbed

plasma currents is much smaller or at most comparable to the external field δ ~Bx driven by

external currents. The effects by perturbed plasma currents can be designated as plasma

response. When the plasma response is considered, the total field, δ ~B = δ ~Bx + δ ~Bp, can

be shielded or amplified with poloidal harmonic coupling, compared to the external field,

δ ~Bx. The plasma response is essential to understand the sensitivity of tokamaks to small

non-axisymmetric perturbations.

The external perturbations in practice change much slower than the relaxation to an

equilibrium, so the plasma response can be understood based on three dimensional plasma

equilibria. Magnetic surfaces exist everywhere in an axisymmetric tokamak, but non-

axisymmetric perturbations can deform or destroy magnetic surfaces. The destruction of

magnetic surfaces can occur at the rational surfaces by opening of magnetic islands. When

significant islands exist, plasma rotation slows down and can lock to islands [9–12]. Plasma

locking must be avoided to maintain good plasma operations. That is, the destruction of

magnetic surfaces associated with islands must be negligibly small to maintain plasmas.

This is identical to assume ideal evolution of axisymmetric equilibria to non-axisymmetric

equilibria since topological changes in magnetic field such as magnetic islands are not al-
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lowed in an ideal evolution. Only the deformation of magnetic surfaces can exist by small

non-axisymmetric perturbations in ideal perturbed equilibria.

In ideal perturbed equilibria, there are two important consequences [13, 14]: (1) Parallel

currents shield the normal resonant field δBmn at the rational surfaces, which determines

the property of opening of magnetic islands and thus locking, and (2) the deformation of

magnetic surfaces causes non-ambipolar transport due to the symmetry-breaking in |B|. In

particular, toroidal torque by non-ambipolar transport [15–20] is associated with Neoclassical

Toroidal Viscosity (NTV) [21–24]. The two fundamental quantities, δBmn and |B|, can

be given by ideal perturbed equilibria including plasma response. This paper describes

the calculations of ideal perturbed equilibria (Sec. II), brief review of its applications to

locking with δBmn (Sec. III), and new applications to NTV torque with |B| (Sec. IV),

with comparison with vacuum superpositions to emphasize the importance of ideal plasma

response. Plasma response based on ideal perturbed equilibria, however, is not fully self-

consistent. Both δBmn and |B| cause a toroidal torque, but currents associated with a

toroidal torque is not included in ideal perturbed equilibria. This will be briefly discussed

(Sec. V) with followed by summary and future work (Sec. VI).

II. IDEAL PERTURBED EQUILIBRIUM CODE

The Ideal Perturbed Equilibrium Code (IPEC) [25], based on DCON [26] and VACUUM

[27] stability codes, solves free-boundary perturbed equilibria preserving the pressure p(ψ)

and the safety factor q(ψ) profiles specified by a given axisymmetric equilibrium. The fixed

q(ψ) profile means that any topological change of magnetic field lines is not allowed and

thus that magnetic islands are suppressed. Mathematically, IPEC solves the perturbed

force balance

~F [~ξ] = ~0 = ~∇δp− δ~j × ~B0 −~j0 × δ ~B, (1)

with the internal boundary conditions at the q = m/n rational surfaces,

Φmn = 0 =
1

(2π)2

∮
dϑ

∮
dϕJ δ ~B · ~∇ψe−i(mϑ−nϕ). (2)

This internal boundary condition suppresses the magnetic islands at the rational surfaces.

The external boundary conditions are given by δ ~Bx · n̂b on a control surface, or equivalently

on the plasma boundary. As detailed description in Ref. [25], the self-consistent normal
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field on the plasma boundary is determined by δ ~B · n̂b =
↔
P [δ ~Bx · n̂b] with a permeability

operator. IPEC uses virtual surface currents to construct the permeability operator, so

initially gives the self-consistent field only inside the plasma. It is not difficult to construct

the self-consistent field outside the plasma if the vacuum field from coils is given, but this

is not discussed in this paper.

The internal boundary condition ensures that there is no magnetic island at the rational

surfaces. Instead, magnetic islands are shielded by parallel currents flowing at the rational

surfaces. The total resonant field δBmn is the field canceled by the shielding currents,

otherwise would arise and open magnetic islands. The shielding currents at the rational

surfaces are important part of ideal plasma response, or equivalently perturbed plasma

currents.

Perturbed plasma currents including shielding currents at the rational surfaces can greatly

modify the penetration of the field. This can be easily illustrated with a cylindrical and force-

free (p = 0) plasma with a non-axisymmetric perturbation. Suppose a cylindrical plasma

with the q = 2 resonant surface at r/a ∼ 0.8 inside with the minor radius r = a. The

plasma is enclosed by a conformal thin wall located r/a = 1.2. When (m = 2, n = 1)

external currents exist at the wall, free boundary perturbed equilibrium can be solved easily

in vacuum, and also in plasma with a simple numerical routine using Cylinder force-free

equation. In this limit, the perturbed magnetic field can be written as δ ~B = ~∇δA‖ × ẑ =

r̂(1/r)(∂δA‖/∂θ)−ẑ(∂δA‖/∂r). With a perturbation δA‖ = δA‖ cos(mθ−nφ), the perturbed

equilibrium can be given by [28]

1

r

d

dr

(
r
dδA‖
dr

)
− m2δA‖

r2
=

q

r

m

m− nq

d

dr
(KR0)δA‖, (3)

given a current profile KR0(r) = (R0/B0)µ0j‖(r).

Fig. 1 shows the solutions by vacuum superposition and Cylinder force-free equation.

For comparison, IPEC solution is also shown for a near cylindrical (ε = 0.1) and near force-

free (βN = 0.1) example. One can see that IPEC solution using virtual surface currents

is almost identical to Cylinder force-free solution inside the plasma. The benchmark of

IPEC solution in the cylindrical limit has been done in this way. Compared to vacuum

superpositions, the ideally perturbed equilibrium (by either of IPEC or Cylinder force-free

solution) shows a fundamental difference. The normal field is completely shielded inside the

resonant surface and the jump in the derivative of normal field implies currents shielding
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the normal resonant field. Also, there are significant plasma currents outside the resonant

surface as well to change the profile of the normal field. As a result, one can find strong

shielding of the field inside the plasma, compared to vacuum superposition.

The amplification also can be easily found in the cylindrical force-free example. Fig. 2

shows free boundary solutions by vacuum superposition, Cylinder force-free, and IPEC as

in Fig. 2, for (m = 3, n = 1) external current at the wall. This amplification arises since

q = 3 surface is close to and outside the plasma boundary, so the energy required to perturb

plasma is very small as well known in ideal MHD theory [29].

In tokamak plasmas with significant toroidicity, poloidal harmonic coupling is also very

strong in addition to shielding and amplification. Therefore, plasma responses, or equiv-

alently perturbed plasma currents, predominantly determine perturbed field and displace-

ment. Vacuum superposition not only can give incorrect evaluation of the perturbed quan-

tities, but also can give misleading physics. The finite resonant field at the rational surfaces

in vacuum superposition will destroy every rational surfaces, which is not true in normal

tokamak operations due to perturbed plasma currents.

III. DESTRUCTION OF FLUX SURFACES AND PLASMA LOCKING

Plasma locking occurs if shielding currents can not be maintained and thus magnetic

islands open at the rational surfaces. There is the critical amplitude of perturbations, over

which the balance is lost between viscous torque by rotation and electromagnetic torque by

shielding currents. This is often called field penetration [9–12]. The balance is determined by

the inner-layer dynamics, but shielding currents must be determined by perturbed equilibria.

IPEC gives shielding currents before the onset of locking, when magnetic islands can be

ignored and thus ideal perturbed equilibria can be used.

IPEC applications to plasma locking problems have highlighted the importance of plasma

response [30]. In both NSTX [31] and DIII-D [32] experiments, each set of particular exper-

iments was not consistent with the previous observations when the external resonant field

δBx
mn was used. The previous observations have shown that locking density is approximately

proportional to the amplitude of the external field [1–5]. If the spectrum of the external

field is fixed in a set of experiments, the resonant field must be proportional to an amplitude

of the external field independently of a component of the external field used for specifying

5



the amplitude. If the spectra become different by various combinations of intrinsic error

and correction field, one must specify a component of external field to estimate a resonant

field driving magnetic islands. The failure to acquire a positive correlation between the

locking density and the external resonant field implies that the external resonant field does

not represent properly a driving resonant field for locking.

The difference between the external resonant field and the total resonant field should be

clarified. From Fig. 1, for instance, one can read the external resonant field δBx
21 ∼ 0.8Gauss

approximately at the q = 2 surface. However, the resonant field including plasma response

(IPEC or Cylinder force-free) is suppressed since parallel currents completely shield out the

resonant field driving magnetic islands. That is, the resonant field driving magnetic islands

must be evaluated from the shielding currents ~js, by ~∇× δ ~B = µ0
~js. In this way, the total

resonant field in Fig. 1 is δB21 ∼ 0.5Gauss which would arise when the shielding currents

~js are all dissipated. The previous picture by the external resonant field is supposed to

approximate this picture by the total resonant field, but has been often misleadingly taken

as the existence of the finite external resonant field and of magnetic islands, which are not

true before a locking occurs.

In toroidal geometry with a finite pressure, the difference between the external resonant

field and the total resonant field can become very large. Fig. 3 shows the results NSTX

and DIII-D locking experiments, in terms of the resonant field versus density at locking.

Fig. 3 (b) data are the same as Ref. [30], but here magnetic coordinates with ordinary

toroidal angles (called PEST) are used for all the resonant field instead of Hamada coordi-

nates. As noted in Ref. [33], the resonant field depends on magnetic coordinates and the

approximations are valid only for core region where the torodicity is not so strong. The

external resonant field in NSTX may be able to approximate the total resonant field, but

it can be greatly misleading as can be seen for DIII-D. DIII-D has more diverse spectra of

non-axisymmetric field than NSTX due to two more rows of coils at the off-midplane. Even

if the external resonant field is almost canceled by corrections at a rational surface, the total

resonant field can remain very large due to irrelevancy of vacuum approximation in tokamak

plasmas.
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IV. DEFORMATION OF FLUX SURFACES AND NTV TRANSPORT

Deformed magnetic surfaces distort trajectories of particle orbits and produce so-called

non-ambipolar transport [15–20], since the transport is different for species. Ions typically

diffuse faster, and resulting net radial currents produce toroidal torques until ambipolar

electric field is restored. Therefore, non-ambipolar transport causes rotational damping,

and the associated viscosity is often called Neoclassical Toroidal Viscosity (NTV) [21–24].

One can use non-axisymmetric field to change toroidal rotation and this is called NTV

magnetic braking [34, 35] of rotation in experiments.

A. Variation of field strength

There are various theoretical predictions for NTV that can be compared with experi-

mental damping rates of rotation. Any of evaluations needs information of B = |B| and

thus requires the calculations of perturbed equilibria. This can be easily understood by

considering the action of a trapped particle with given energy H and magnetic moment µ

as

J =

∮
v‖dl ∝

∮ √
H − µ|B|dl. (4)

The action must be conserved for a particle, but the action is dependent on toroidal location

in the presence of the non-axisymmetry in |B|. Hence, a particle must drift radially to

conserve the action while precesses toroidally.

It should be emphasized that the non-axisymmetry in B must be evaluated along the true

magnetic field lines dl. That is, non-axisymmetric variations in B, δB, must be evaluated

along perturbed magnetic field lines. This Lagrangian evaluation for the variation in the

field strength is given by [14]

δLB = δEB + ~ξ · ~∇B0, (5)

in the lowest order of the perturbation and the Eulerian evaluation at fixed points in space

is

δEB = δ ~B · b̂, (6)

where b̂ = ~B0/B0 is the unit vector of the unperturbed magnetic field. Note that the

variation of field strength in Eulerian frame is determined by tangential components of
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perturbed magnetic field. The vacuum approximation for the variation in the field strength

uses the external field instead of the total field, that is,

δEBx = δ ~Bx · b̂. (7)

The difference of two Eulerian evaluations, δEB and δEBx, depends on plasma response.

However, the correct variation in the field strength for Eq. (4) is not either of them, but is

the Lagrangian evaluation in Eq. (5). The Lagrangian δLB is typically larger than Eulerian

evaluation since it is dominantly determined by spatial variations of B0 ∝ 1/R, which is

much larger than perturbed field δB, seen in ~ξ displaced magnetic field lines. The example is

shown in Fig. 4, where n = 1 field using Error Field (EF) coils with a typical current ∼ 1kA

is applied to a NSTX plasma. A moderate βN = 1.0 is chosen to suppress large amplifications

as one can see from that δEB is similar to vacuum approximation δEBx. Although plasma

amplifications can be ignored, one can see that the Lagrangian evaluation is larger than

vacuum approximation by an order of magnitude. In practice, vacuum approximation gives

δEBx/B0 ∼ 10−4 and Lagrangian evaluation including plasma response gives δLB/B0 ∼ 10−3

except the applied field is close to a marginally stable mode. Since NTV transport is

proportional to δLB2
mn for a single harmonic perturbation, this difference can give ∼ 102

factors in the calculations.

The Lagrangian δLB in IPEC can provide relevant prediction for the variation in the field

strength, however, the singularity exists in the narrow region around the rational surfaces.

This arises because the tangential displacement is determined by ~∇ · ~ξ = 0 and gives ξ‖ ∝
~∇ · ~ξ⊥/(m − nq). This is the feature of ideally perturbed equilibria and can remain if only

the evaluation for a local torque is desired. However, the regularization is required for the

evaluation for the total toroidal torque. IPEC alters the tangential displacement as [29]

ξ‖ ∝ m− nq

(m− nq)2 + σ2
~∇ · ~ξ⊥, (8)

with a small parameter σ, which can be reasonably taken as an ion gyro-radius ∆gψ and

corresponding σ ≈ (m − n∆gq). The integration and the total torque are not sensitive to

variations of σ, if σ ∼ σg within an order of magnitude, since only the very narrow region

around the rational surfaces is affected by the regularization. Despite the regularization,

the peaks around the rational surfaces as seen in Fig. 4 may be still nonphysical. This is

in fact the consequence of non-self-consistency in ideally perturbed equilibria, which will be

discussed in Sec. V.
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B. Theoretical prediction of NTV braking

The variation in the field strength δLB given by IPEC can be used to evaluate NTV

torques and rotational damping rates. NTV transport has been studied by a number of

authors. In particular, Shaing has calculated various asymptotic limits in perturbed toka-

maks including multi-harmonic perturbations [21–24]. It has been known that there are two

main regimes, the 1/ν regime [23] when ωE << ν and the ν
√

ν regime [24] when ωE >> ν.

Although the calculations are more realistic than the previous calculations with a single

harmonic perturbation, it is still difficult to apply the results to tokamaks since the regimes

overlap, and the transport in different regimes differs by several orders of magnitude. Also,

the precession rates are sufficiently strong for NBI-heated tokamaks to give resonances with

bounce of trapped particles. Therefore, a generalized formula has been derived to include

precessions and resonant effects and to combine different regimes [20]. The resonant effects

between the electric precession and the bouncing orbits have been calculated by Ref. [19]

for a single harmonic perturbation, but the new generalization includes multi-harmonic per-

turbations, magnetic precession, and combines different regimes using an effective collisional

operator. Including the general formula, here two evaluations in the asymptotic limits, in

the 1/ν regime and in the ν
√

ν regime, are also summarized for comparison.

The results can be written for a flux-averaged toroidal force density, τϕ ≡ ~τ · (∂~x/∂ϕ) ≡
〈φ̂ · ~∇· ↔Πa〉 for species a, where φ̂ is the unit vector of ordinary toroidal angle. Dropping the

species a subscripts, each evaluation gives

τϕ,1/ν =
ε3/2puϕ

1/ν√
2π3/2

〈
1

R

〉
1

ν

∫ 1

0

dκ2δ2
w,1/ν (9)

τϕ,ν
√

ν =
ε−1/2puϕ

ν
√

ν√
2π3/2

〈
1

R

〉
1

ω2
E

∫ 1

0

dκ2δ2
w,ν

√
ν (10)

τϕ,` =
ε1/2puϕ

`√
2π3/2

〈
1

R

〉∫ 1

0

dκ2δ2
w,`

∫ ∞

0

dxR1,`, (11)

for 1/ν, ν
√

ν and general formula, respectively. The ε is the inverse aspect ratio, p is the

pressure of species, R is the major radius, ωE is the toroidal precession angular frequency.

The δ2
w is the square of variation in the field strength with different weighting factor for
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different harmonic perturbations.

δ2
w,1/ν ≡

∑

nmm′
δ2
nmm′

n2F
1/2
nm0F

1/2
nm′0

E(κ)− (1− κ2)K(κ)
(12)

δ2
w,ν

√
ν ≡

∑

nmm′
δ2
nmm′(E(κ)− (1− κ2)K(κ)) (13)

×
(

∂Lnmc

∂κ2

∂Lnm′c

∂κ2
+

∂Lnms

∂κ2

∂Lnm′s

∂κ2

)
(14)

δ2
w,` ≡

∑

nmm′
δ2
nmm′

n2F
−1/2
nm` F

−1/2
nm′`

4K(κ)
, (15)

where K(κ) is the elliptic integral of the first kind, E(κ) of the second kind and

δ2
nmm′ = Re(δnm)Re(δnm′) + Im(δnm)Im(δnm′). (16)

Each function is defined as

F y
nm` ≡

∫ ϑt

−ϑt

(κ2 − sin2(ϑ/2))y cos(m− nq − σ`)ϑ (17)

Lnmc ≡ F
−1/2
nm0

2K(κ)

(
1− cos(

√
nς)e−

√
nς

)
(18)

Lnms ≡ F
−1/2
nm0

2K(κ)

(
sin(

√
nς)e−

√
nς

)
, (19)

with the turning point ϑt ≡ 2 arcsin(κ), the sign function that +1 for co-rotating case, and

the stretch variable related to the width of layer for
√

ν regime as [24]

ς = (1− κ2)

(
ln(16/

√
4ν/εωE)

4ν/εωE

)1/2

. (20)

The resonant term in Eq. (11) is given by

R1,` =
1

2

(1 + ( `
2
)2) ν

2ε
xe−x

(`ωb − n(ωE + ωB))2 +
(
(1 + ( `

2
)2) ν

2ε

)2
x−3

. (21)

The bounce frequency ωb and the magnetic precession ωB are functions of (x, κ2), but one

can use further approximations as functions only of x. The approximations are

ωb =
π
√

ε

2
√

2
ωt

√
x

K(κ)
≈ π

√
ε

4
√

2
ωt

√
x, (22)

ωB = σ
q3ω2

t

2εωg

x
F
−1/2
010 (κ)

4K(κ)
≈ σ

q3ω2
t

4εωg

x, (23)

where the transit frequency ωt = vt/qR0 and the gyrofrequency ωg = eB/M .
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The torque is proportional to the toroidal flow uϕ = ~u · ~∇ϕ with an offset by the neoclas-

sical flow as

uϕ
N ≡ uϕ + CNσ

∣∣∣∣
1

e

dT

dχ

∣∣∣∣ . (24)

For each regime, C1/ν ≈ 3.5, Cν
√

ν ≈ 0.92, and C` ≈ 2.0.

The Eqs. (9) ∼ (24) can be used for comparison with experiments, but these formulas

have limitations : (1) The evaluations take only the trapped particles into account. The

effects by passing particles are expected to be weaker than trapped particles. This can be

seen by comparing the 1/ν evaluation for trapped particles and the collisional [21] or plateau

[36] evaluations for passing particles [35], ignoring precessions or resonances. However, a

systematic evaluation for passing particles with the precessions has not been resolved yet. (2)

The radial excursions of banana orbits from a magnetic surface are ignored, which can drive

complicated effects involved in the variations of the electric potential. (3) The field model

ignores high-order shaping terms of plasmas assuming a high aspect-ratio circular tokamak.

Although the model can describe effectively the width and the depth of magnetic wells,

present tokamaks typically have strong shaping and so NTV evaluations can be inaccurate

especially in the edge. Also, (4) the analytic treatments cannot exactly describe complicated

interactions between precessions, particle orbits and collisions in the presence of multi-

harmonic perturbations, which can lead stochastic transport [17]. These limitations have to

be resolved by numerical evaluations, for instance, using δf code, in the future.

C. Experimental measurement of NTV braking

The Eqs. (9) ∼ (24) gives various evaluations for toroidal torque, which can be com-

pared with experiments. While making comparison between theory and experiment, it is

convenient to use rotational damping rates as

νdamp
∼= τϕ

uϕR0MN
, (25)

where M is the mass and N is the density of a species.

Fig. 5. shows n = 3 magnetic braking experiments performed in NSTX. The two shots

have almost identical plasma, run in lower single null configuration, elongated as high as

κ = 2.3, with Ip = 800kA (Fig. 5 (a)) and BT0 = 0.45T . The electron densities are

similar to each other (Fig. 5 (b)), although the slow evolutions imply that kinetic equilibria
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need longer time scale. For one of these shots, n = 3 braking field is applied using RWM

coils in NSTX with currents 600A for each (Fig. 5 (c)). One can see from (b) that the

amplitude of the braking is low enough not to change particle confinement, and also not to

change heat confinement. A clear change was made in the momentum confinement. The

plasma rotation reached up to 20 ∼ 30kHz in the early period by 6MW NBI and settled

down to similar rotational equilibrium as shown in Fig. 5 (d). However, when the braking

field is fully applied at t = 500ms, the toroidal rotation starts to damp and relaxes to a

different rotational equilibrium. This example indicates the non-ambipolar transport by

non-axisymmetric field can produce a strong momentum transport, but the particle and

heat transport can be dominated by neoclassical ambipolar or anomalous transport. Also,

the use of a reference shot as in these examples is important to discriminate the effects by

the non-ambipolar transport.

The change of toroidal rotation is determined not only by the non-ambipolar transport

with perturbations, but also by various sources including the turbulence-driven momentum

transport [37] and the input torque by NBI. The momentum balance equation can be written

as

MN
∂Ω

∂t
= 〈φ̂ · δ~j × δ ~B〉 − 〈φ̂ · ~∇ · ↔Π〉 (26)

+
∂

∂ρ

(
MNχφ

∂Ω

∂ρ
−MNV pinchΩ

)
+ S, (27)

for the time evolution. This is a symbolic form representing each relevant physics. The first

term in the right hand side is the torque arising at the rational surfaces due to the shielding

currents, and is related to locking property in the Sec III. The second term is the non-

ambipolar torque related to magnetic braking. The third term includes a diffusive process

of the transport and a pinch, both of which can include classical, neoclassical and turbulence

driven momentum transport. The last term represents the source by the additional heating,

mainly by NBI. The best way to discriminate the second term in experiments is to use a

reference shot that can be subtracted from a magnetic braking shot. The plasma condition

must be almost identical, and one must determine the damping in a short time period,

otherwise the different rotation evolution can make differences for other terms in Eq. (27).

When the time period is short enough, the exponential decay of the rotation to a new

rotational equilibrium can be linearized. In NSTX, the experimental rotational damping

rates are measured in this way. The time period is as short as ∼ 50ms, beyond which the
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linear behavior can not be assumed.

Fig. 6 shows the evolutions of the rotation mapped on the flux surfaces, with and without

n = 3 magnetic braking. One can see the profile of the toroidal rotation is almost identical

right before the magnetic braking (t = 500ms), but evolves differently after the magnetic

braking, so one can subtract (a) from (b) to obtain the damping purely driven by the braking.

This example is in fact better since the rotation does not evolve very much during the period

of time considered. This settlement of the rotation in an equilibrium, however, is not seen

for all the cases, and it is necessary to use an identical reference shot.

There are other issues in the comparison with the observed damping rates. The toroidal

rotation in NSTX (and DIII-D) is measured by CHarge Exchange Recombination Spec-

troscopy (CHERS) based on Carbon impurity. Here it will be assumed that the CHERS

measurement represents the toroidal rotation of the main ions, as commonly assumed in

other experiments. However, since a certain amount of time is required to achieve the equi-

libration between carbon ions and main (deuterium) ions, a damping seen by CHERS can

have more smooth profile than the immediate response of the main ions. These are ignored

in our study, but must be addressed in the future.

D. Comparison between theory and experiment

The measured damping rates purely by the magnetic braking can be compared with

the calculations of NTV using IPEC field. There has been different methods, for instance,

using a separate regime and only the external field, which have been quite successful to

approximate the observed damping rates in NSTX [35]. Here three additional physics are

included to improve the consistency further :

(a) Toroidal precession rates (ωp = ωE +ωB) are often faster than the collisional rates (ν).

(b) The bouncing orbits of trapped particles can resonate with the precessions, that is,

`ωb ∼ nωp.

(c) Variation of field strength along the perturbed magnetic field lines, that is, δLB,

including plasma response is substantially different from vacuum approximation δEBx.

As in the Fig. 7, one can obtain different evaluations if
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(1) (a), (b) and (c) are all ignored : vacuum 1/ν

(2) (a) is only included : vacuum 1/ν ν

(3) (a) and (b) are included : vacuum general

(4) (a), (b) and (c) are all included : IPEC general

The evaluation assuming 1/ν regime based on vacuum approximation can be close to mea-

surement (vacuum 1/ν), but in presence of the strong precession, the prediction becomes

too small (vacuum 1/ν ν) unless the bounce-harmonic resonances (vacuum general) and

simultaneously the true variation in the field strength are considered (IPEC general).

The example shown in Fig. 7 even follows the complicated profile of damping rates very

well. However, this is not for all the cases. Fig. 8 showed comparisons of the damping rates

between measurements and NTV calculations, in NSTX and DIII-D, respectively. As one

can see, predictions are valid only within an order of magnitude, but generally fails to follow

the detailed profiles in the measurements. Generally, the measured damping rates are much

smoother than the predictions. Among many possible reasons for these deviations in both

theory and experiment as described, the non-self-consistency in ideal perturbed equilibria is

probably most important.

V. NON-SELF-CONSISTENCY IN IDEAL PLASMA RESPONSE

When the variations in the field strength are calculated using IPEC and are used for the

calculations of a toroidal torque, the inconsistency occurs since scalar pressure perturbed

equilibria ~∇p = ~j × ~B have no toroidal torque. The toroidal torque is given by a tensor

pressure ~∇ · ↔Π. If a toroidal torque evaluated in IPEC is comparable to a perturbed scalar

pressure energy, one needs to solve tensor pressure perturbed equilibria, ~∇p+ ~∇·↔Π = ~j× ~B

[38]. Note the torque and the energy have the same units. There is no proper method yet

to compare the detailed profiles of the two in a self-consistent way. However, it is possible

to compare the total energy with the total torque for plasma since the integration of tensor

pressure perturbed equilibria over the whole volume of plasma gives a relation between the

total values and external magnetic measurements [39].
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The external magnetic measurements can determine

s ≡ − δW

δWv

and α ≡ − Tϕ

2δWv

, (28)

where δW is the total perturbed energy, δWv is the energy required to make the same

perturbations in vacuum, and Tϕ is the total toroidal torque, that is, the volume integration

of τϕ in Eqs. (9) ∼ (11). When |s| >> |α|, ideal perturbed equilibria can be a good

approximation, but when |s| ∼ |α|, the energy and the torque evaluated by IPEC would be

inconsistent. In particular, the currents associated with the torque would shield external

perturbations since it becomes difficult for the perturbation to tap the energy from plasma

due to a toroidal phase shift [39].

Fig. 9 shows a set of NSTX experiments with n = 1 rotating external field [39]. The

(sE, αE) are the experimentally derived values from magnetic sensors, and the (sT , αT )

are the evaluations using IPEC and generalized NTV in Eq. (11). One can see that the

inconsistency occurs between experiment (sE, αE) and theory (sT , αT ) when |sE| ∼ |αE| and

|sT | & |αT |. The study implies that tensor pressures are more important for higher βN ,

especially above the no wall limit βN ∼ 4.0. Also, one can see the expected shielding from

αE < αT in high βN .

The higher n perturbations have the higher no-wall limit in terms of βN , and |s| >> |α|
for most of practical applications. For instance, all the n = 3 applications studied in Figs.

(7) ∼ (8) have |s| > 0.5 and |α| < 0.2 for NSTX, and |s| > 0.8 and |α| < 0.1 for DIII-D,

indicating the relevancy of ideal perturbed equilibria. However, tensor pressure equilibria

are necessary for any case to improve the detailed profiles of perturbation and torque. As

discussed already, the singularity in ξ‖ and the peaks in Fig. 4 indicate the very large toroidal

torque around the rational surfaces, which would not be physical and would be shielded by

local tensor pressures.

VI. SUMMARY AND FUTURE WORK

The characteristics of perturbed tokamak equilibria and the importance of ideal plasma

response are illustrated. The Ideal Perturbed Equilibrium Code (IPEC) solves perturbed

tokamak equilibria only with deformed magnetic surfaces suppressing magnetic islands.

IPEC has shown that the effects by perturbed plasma currents can make not only dif-
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ferent penetration of the field, but also strong shielding and amplification in general. The

IPEC applications to locking experiments in both NSTX and DIII-D have highlighted the

importance of plasma response in perturbed tokamaks. The inconsistency of the external

resonant field explaining the critical locking density has been resolved by the total resonant

field driving magnetic islands that can be obtained from IPEC calculations. The total res-

onant field will be used to construct global locking scaling between devices to predict the

locking threshold in ITER.

The importance of plasma response effects is also illustrated in the non-axisymmetric

variation of the field strength, which causes non-ambipolar transport and NTV braking

of toroidal rotation. The actual variation in the field strength evaluated along perturbed

magnetic field lines is different and typically larger than Eulerian evaluation along the un-

perturbed magnetic field lines in vacuum or including plasma response. When the IPEC

variation in the field strength is coupled with generalized theory of non-ambipolar transport,

the consistency between experiment and theory can be improved. However, there are still

various unresolved issues in both experiment and theory. Especially IPEC equilibria have

no toroidal torque, and thus the extension of IPEC to tensor pressure perturbed equilibria is

important to be fully self-consistent in the description of the field strength, associated NTV

braking and non-ambipolar transport.
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FIG. 1: The normal field δB21 as a function of the radius in a perturbed cylindrical force-free

plasma. Each solution is obtained using vacuum superposition (Vacuum), Cylinder force-free

equation (Cylinder force-free), and IPEC with virtual surface currents (IPEC). Cylinder force-

free and IPEC give the almost identical solution for plasma and show strong shielding inside the

resonant surface q = 2/1.
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FIG. 2: The normal field δB31 as a function of the radius in a perturbed cylindrical force-free

plasma. As Fig. 1, each solution is obtained using vacuum superposition (Vacuum), Cylinder

force-free equation (Cylinder force-free), and IPEC with virtual surface currents (IPEC). Cylinder

force-free and IPEC give the almost identical solution for plasma and show strong amplification

throughout plasma.
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FIG. 3: The critical amplitude of the resonant field versus density at locking in (a) NSTX and (b)

DIII-D experiments. The external resonant field δBx
mn is compared with the total resonant field

δBmn at q = 2/1 and q = 3/1 rational surfaces. PEST means specific magnetic coordinates using

the ordinary toroidal angle. Linear correlation between the total resonant field and locking density

can be seen in both NSTX and DIII-D.
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FIG. 4: Comparison for the radial profiles of one component (m=1,n=1) of the non-axisymmetric

variation in the field strength between Eulerian vacuum (δEBx), Eulerian IPEC (δEB) and La-

grangian IPEC (δLB) evaluations. The calculation is done with a typical n = 1 Error Field (EF)

coil current (∼ 1kA) to a moderate βN = 1.0 NSTX plasma, so plasma amplifications are not

strong in this example. However, Lagrangian evaluation is still larger than other two Eulerian

evaluations.
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FIG. 5: Magnetic braking experiments in NSTX. Time evolutions for (a) Plasma current, (b)

Electron density, (c) n=3 RWM current, and (d) Toroidal rotation are shown for plasmas with

(red) and without (black) magnetic braking.
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without a magnetic braking and (b) with n = 3 magnetic braking as shown in Fig. 5 (b)
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NSTX n=3 NTV prediction
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FIG. 7: Comparisons between measured damping rates (NSTX #124439.00500) and different meth-

ods of NTV calculations. (1) 1/ν evaluation using Eq. (9) and vacuum field (δEBx), (2) ν
√

ν

evaluation using Eq. (10) and vacuum field, (3) general evaluation using Eq. (11) and vacuum

field, and (4) general evaluation using IPEC field (δLB).
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FIG. 8: Comparisons of the damping rates as functions of ψN between measurements (¤) and

general IPEC NTV calculations in (a) NSTX and (b) DIII-D .
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FIG. 9: Ref. [39]. Comparison (a) between averaged sT (blue) and sE (black), and (b) αT (blue)

and αE (black). Note the good agreement between the measurement and the theory when |α| < |s|,
but the inconsistency occurs when |α| ≥ |s| since the currents associated with the torque are not

included in ideally perturbed equilibria. It can be seen the additional (a) stabilizing effect in sE

and (b) shielding effect in αE by the torque.
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