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Kinetic modification of ideal stability theory from stabilizing resonances of mode-particle interaction has had
success in explaining resistive wall mode (RWM) stability limits in tokamaks. With the goal of real-time
stability forecasting, a reduced kinetic stability model has been implemented in the new Disruption Event
Characterization and Forecasting (DECAF) code, which has been written to analyze disruptions in tokamaks.
The reduced model incorporates parameterized models for ideal limits on β, a ratio of plasma pressure to
magnetic pressure, which are shown to be in good agreement with DCON code calculations. Increased β
between these ideal limits causes a shift in the unstable region of δWK space, where δWK is the change in
potential energy due to kinetic effects that is solved for by the reduced model, such that it is possible for
plasmas to be unstable at intermediate β but stable at higher β, which is sometimes observed experimentally.
Gaussian functions for δWK are defined as functions of E × B frequency and collisionality, with parameters
reflecting the experience of the National Spherical Torus Experiment (NSTX). The reduced model was tested
on a database of discharges from NSTX and experimentally stable and unstable discharges were separated
noticeably on a stability map in E × B frequency, collisionality space. The reduced model only failed to
predict an unstable RWM in 15.6% of cases with an experimentally unstable RWM and performed well on
predicting stability for experimentally stable discharges as well.

I. INTRODUCTION

In ideal magnetohydrodynamic theory, a fusion plasma
is by definition stable with a normalized ratio of plasma
stored energy to magnetic confining field energy up to
a value of βno−wall

N . The plasma is theoretically unsta-
ble above this “no-wall” beta limit to kink-ballooning
modes when no wall is present, or the resistive wall mode
(RWM) when a wall is present (Fig. 1). The RWM grows
on the slower time scale of the penetration of magnetic
perturbations through the wall, τw (typically millisec-
onds), but it is still fast compared to the duration of the
plasma shot (typically seconds). Therefore it is neces-
sary to stabilize this mode for continuous operation of
tokamak fusion devices.
A new and advanced approach for unstable RWM

avoidance is to use real-time physics-based models for
early warning of approaching marginal RWM stability.
Unstable RWM detection based on an experimentally
measured exponentially growing magnetic signal is useful
for characterizing the timing of the RWM and its place
in the chain of events leading to disruption of the plasma
current, but it can potentially come too late to take
corrective action and to steadily maintain key plasma
parameters such as the stored energy. Some examples
of possible early warnings are the use of active MHD
spectroscopy1,2, or the mismatch between the observer
of an RWM state-space controller3 and measured signals.
Another method, which is described in detail presently, is
to examine when the plasma toroidal rotation profile falls
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FIG. 1. Theoretical growth rates vs. βN for the resistive wall
mode and ideal kink. The grey area is where the resistive wall
mode can be passively stabilized by kinetic effects.

into a weaker RWM stability region based upon kinetic
stability theory4–11. The recent success of kinetic mod-
ification to ideal theory, which contains broad stabiliz-
ing resonances via mode-particle interaction, in describ-
ing experimental RWM stability limits gives confidence
in this approach. This approach will enable, for the first
time, an unstable growing RWM to be anticipated, rather
than being controlled after it becomes unstable. In all of
these cases, one might then use a plasma rotation con-
trol system12 to avoid these unfavorable profiles, while
still having active control of the RWM13. Anticipation of
the instability condition also potentially allows an active
mode control system to remain in a low-power state until
needed, desirable for ITER and future devices.

In the present work we utilize the new Disruption
Event Characterization and Forecasting (DECAF) code,
which has been written for the general purposes of char-



acterization of the chains of events which most often lead
to disruption of plasmas and providing forecasts which
integrate with a disruption avoidance system in multiple
devices. The reduced kinetic stability model described
here has been implemented within the framework of the
DECAF code, with the ultimate goal of real-time opera-
tion in the NSTX-U14 tokamak. Presently, the model is
tested off-line on data from NSTX15, the predecessor to
NSTX-U. The model described here is “reduced” because
the complexity of the kinetic stability theory and present
codes to calculate it is too large to run in real-time. That
said, any reduced model still needs to be able to provide
an accurate description of the full physics model over the
operational space of the device to which it is being ap-
plied.
This paper is arranged as follows. First, in section II,

the expression for the growth rate of the RWM is de-
scribed in detail. This is followed by specific attention to
expressions for the ideal fluid terms which are necessary
in sections III and IV. Without yet defining the reduced
kinetic term, the general behavior of the model in kinetic
stability space is examined in section V. In section VI,
the reduced kinetic model is described, implemented, and
finally in section VII, compared to experimental data to
determine its effectiveness.

II. RWM STABILITY

The stability of plasmas to RWMs has been explained
in multiple devices by employing calculations of kinetic
effects2,8–11,16, with codes such as MISK

5. MISK solves
for the growth rate and real frequency (γ and ωr) of the
RWM through a dispersion relation dependent on the
change in potential energy due to the perturbed kinetic
pressure δWK :

(γ − iωr)τw = −
δW∞ + δWK

δWb + δWK
. (1)

Note that the growth rate is normalized by the wall time
and the units of the δW terms are arbitrary, as long as
they are consistent. δWK is calculated using the per-
turbed distribution function from the drift kinetic equa-
tion, and the solution involves a frequency resonance frac-
tion λ ∼ (ωD + ωb − iν + ωE)−1, where ωE , the E × B
frequency, scales with the plasma rotation, which can be
in resonance with the precession (ωD) and bounce (ωb)
motions of the particles9 and is effected by the particle
collisionality17 (ν).
We now turn to considering each of the δW terms,

starting with the ideal fluid terms.

III. IDEAL NO-WALL LIMIT

A parameterized model for the fluid no-wall β limit,
which depends on parameters that can be measured or

modelled in real-time (plasma internal inductance (li),
pressure peaking (p0/⟨p⟩), and aspect ratio (A)), has
been recently computed for NSTX16. Figure 2 shows that
the so-called composite model does a good job predicting
the no-wall limit calculated by the DCON stability code18

for some of the first high-beta discharges in NSTX-U,
the upgrade to NSTX14. This is despite the fact that
the model was developed in the range of li < 0.64 and
p0/⟨p⟩ < 2.25, while the early NSTX-U discharges are
above both of those ranges at high beta. The aspect ra-
tio scaling (βn=1

N,no−wall decreases with increasing A16,19)
corrects the difference between previous NSTX results
and the present, somewhat higher A NSTX-U plasmas.

The ideal model has been implemented in DECAF, and
it replicates the analytical βn=1

N,no−wall limit in Ref. [16].
Figure 3a shows the measured βN for NSTX discharge
139514 along with the modelled no-wall and with-wall
limits. It should be noted that presently all the model
analysis described here is performed on post-processed
equilibria, but it can easily accept equivalent real-time
signals as well.

A model for βn=1
N,no−wall provides the point at which

δW n=1
no−wall crosses zero (from positive (stable) to negative

(unstable)) as βN increases. Here βN ≡ 108⟨βt⟩aB0/Ip,
where βt ≡ 2µ0⟨p⟩/B2

0 is the toroidal beta, p is the
plasma pressure, B0 is the vacuum toroidal magnetic field
at the plasma geometric center, and a is the plasma mi-
nor radius at the midplane. However, in order to esti-
mate the RWM growth rate from Eq. 1, we require a
model for δW n=1

no−wall as a function of plasma parameters.
A heuristic model of Hu and Betti4 for the no-wall limit
used δW n=1

no−wall ∼ βn=1
N,no−wall − βN . When the model

for the no-wall limit was developed in Ref. [16], many
hundreds of experimental equilibria were run through
DCON and a fit was made to δW n=1

no−wall vs. βN and other
parameters16. For example when only pressure peak-
ing was considered, at low values of p0/⟨p⟩ < 2.25,
δW n=1

no−wall = 2(1 − (βN/(1.91p0/⟨p⟩))3) was found (⟨⟩
represents volume average). This analysis revealed a dif-
ference between the DCON δW n=1

no−wall and the heuristic
model in that the DCON results tended to saturate for
low beta below the no-wall limit at stable, positive val-
ues of δW n=1

no−wall. In other words, there is a ceiling on
the stability level of any given plasma and it is difficult
to continue to make a plasma even more stable, which
intuitively makes sense.

One possible issue with using the DCON-based equa-
tion for δW as a function of βN is that at high beta
approaching the with-wall limit it does not saturate,
but rather continues to grow quite large20. This im-
plies (Eq. 1) a very large fluid growth rate, which would
make it very difficult for kinetic effects to stabilize the
plasma at high beta, in contrast to experimental ob-
servations. Therefore we conclude that DCON calcula-
tions of δW n=1

no−wall, which until now were almost exclu-
sively used for determining the zero-crossing (no-wall
limit), are very reasonable below or near the no-wall
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FIG. 2. Measured βN and DECAF modelled βn=1
N,no−wall (blue), and DCON calculated −δW n=1

no−wall vs time for NSTX-U discharges
204112 (left) and 204118 (right).

limit, but possibly not accurate well above it. In or-
der to allow experimentally observed kinetic stabiliza-
tion we propose to use in our present reduced model
a simple expression for δW n=1

no−wall as a function of βN :
δW n=1

no−wall = 2 tanh
(

π
2 (−Cβ)

)

, where Cβ is the familiar
parameter (βN − βn=1

N,no−wall)/(β
n=1
N,with−wall − βn=1

N,no−wall).
We will see in the next subsections that this expres-
sion captures the essential dependencies of DCON while
also permitting interesting and complex stability behav-
ior when kinetic effects are included.
The quantity Cβ is shown in Fig. 3b for NSTX dis-

charge 139514, and δW n=1
no−wall is shown in Fig. 3c. Also

shown in Fig. 3b is a moving average of Cβ . The moving
average, which we will also employ on other quantities
later, provides a considerably smoother signal, with the
tradeoff of a time lag because the average is causal (using
only previous time points) for compatibility with future
real-time systems. Here the average was taken oven 10
time points of 8 ms resolution.

IV. IDEAL WITH-WALL LIMIT

A model for the fluid with-wall β limit was not exam-
ined in Ref. [16], but a simple model can be provided
here. Previously, the with-wall β limit has been com-
puted for NSTX in four different high performance dis-
charge scenarios by scaling pressure profiles and running
DCON with the wall21. In that case it was noted that
the with-wall β limit tracked the continuous evolution
of the current profile, such that as internal inductance
(a measure of the peakedness of the current profile) in-
creased with time during the discharges, βn=1

N,with−wall de-
creased. Subsequently, in projected with-wall β limit

calculations for NSTX-U it was noted that the with-
wall β limit decreased with increasing pressure peaking
as well22. These two trends are related, as there is an
experimental correspondence between pressure and cur-
rent peaking16. This behavior of the with-wall β limit
is in contrast to the trends of the no-wall β limit with
pressure peaking and internal inductance, which tend to
increase at low peakedness before flattening off16. There-
fore the expected gap between the no-wall and with-wall
n = 1 β limits is considerably wider with broad current
and pressure profiles, and narrower with more peaked
profiles23,24. This behavior can be seen in Fig. 4a, which
shows the previously derived βn=1

N,no−wall limit with pres-

sure peaking dependence only16 and the βn=1
N,with−wall limit

that will be presently described.

The with-wall limit is also evident in an operational
limit on β with increasing pressure peaking which can
be seen clearly in Fig. 3 of Ref. [16] (these effects should
also be seen in ITER25). In fact, the fit to the DCON cal-
culated projected with-wall limit for NSTX-U found in
Ref. [22], βn=1

N,with−wall = 0.2 + 12.5/(p0/⟨p⟩) also approx-
imates the operational limit seen in NSTX. Therefore,
for the present purpose we will use a similar estimate
for βn=1

N,with−wall, without adding a dependence on inter-
nal inductance since this won’t add much to the estimate
because of the aforementioned correspondence between
the two parameters.

Similar to the no-wall δW analysis, an analysis of hun-
dreds of experimental equilibria from NSTX has now
been performed with DCON including a conducting wall.
A similar stable, positive saturation of the with-wall
limit was also found. Also, it was seen that the plas-
mas stayed below the with-wall limit to a slightly higher
level of βN than the estimate for NSTX-U from Ref. [22],



FIG. 3. a) Measured βN (black) and DECAF modelled
βn=1
N,with−wall (red) and βn=1

N,no−wall (blue), b) Cβ calculated from
the quantities in frame a (black) along with a moving average
(red) and colored markers indicating where Cβ crosses certain
levels, c) δW n=1

with−wall (red) and δW n=1
no−wall (blue), and d) nor-

malized ideal fluid growth rate vs. time for NSTX discharge
139514.

which makes sense considering the lower aspect ratio of
NSTX16. Therefore, the model we will use for the with-
wall β limit is βn=1

N,with−wall = 0.75 + 12.5/(p0/⟨p⟩). In
addition to the previously-derived no-wall β limit esti-
mate, Fig. 3a shows the with-wall β, which has also been
recently implemented in DECAF.

For δW n=1
with−wall a similar dependence to that for the

no-wall δW will be used, here with 1 − Cβ for the with-
wall limit: δW n=1

with−wall = 2 tanh
(

π
2 (1− Cβ)

)

. This
with-wall δW is also shown in Fig. 3c for NSTX dis-
charge 139514. The no-wall (blue) and with-wall (red)
δW terms calculated in this way are compared to the

linear heuristic model for the NSTX case at p0/⟨p⟩ = 2
in Fig. 4b. Negative δW is plotted here to more intu-
itively show the change from stable to unstable as βN is
increased. Note that both δW curves saturate at low β,
as is seen in DCON calculations, and both are quite close to
the heuristic model near the zero crossings. The new fea-
ture is that δW n=1

no−wall saturates near the with-wall limit
as opposed to continuing to greatly increase.
Finally, the fluid growth rate of the RWM, γfτw (from

Eq. 1 with δWK = 0), is shown in Fig. 3d. Of course,
as has been demonstrated, the fluid growth rate of the
RWM can not explain its stability; modifications to ideal
stability by kinetic effects are necessary16.

V. GENERAL BEHAVIOR OF THE RWM GROWTH
RATE MODEL

Once the kinetic term δWK is defined, the growth rate,
γτw is calculated from Eq. 1. In the simple, heuristic
model of Ref. [4], δWK ∼ βN (x + iy), where x and y
represent the real and imaginary parts that were left to
be defined by kinetic stability calculations.
Without yet defining δWK we can also demonstrate the

consequences of the present reduced model fluid terms
on stability. Figure 5a shows a stability diagram in
Im(δWK) vs. Re(δWK) space in which the unstable re-
gions (inside the circles) are defined by the fluid terms9

(the radius of the circles r = 1
2 (δWb − δW∞), while the

offset a = 1
2 (δWb + δW∞). In other words, the diameter

of the circle is given by the horizontal gap between the
red and blue δW curves in Fig. 4b, at a given Cβ , while
the origin of the circle is given by the midpoint between
those curves. One can see in Fig. 5a that the unstable
region shifts from negative Re(δWK) space to positive
as Cβ is increased from the no-wall to the with-wall lim-
its, while the size of the region increases then decreases
again.
Finally, using sample levels of δWK , we can see the

predicted RWM kinetic growth rate of this model, shown
in Fig. 5b. With Re(δWK) = Im(δWK) = 0, the fluid
growth rate is recovered, which increases asymptotically
as Cβ goes from 0 to 1. However, when finite kinetic
effects are introduced the behavior changes. With a
sufficiently large level of kinetic effects, shown by the
“X” marker in Fig. 5a, the plasma is robustly stable.
With Re(δWK) = Im(δWK) = 0.5 (square marker), it
takes Cβ = 0.2 for the unstable region to overtake the
kinetic stability. With Re(δWK) = Im(δWK) = 1.0
(triangle marker), it takes Cβ = 0.6 for instability and
then at higher Cβ ≈ 0.9 the unstable region shrinks and
the plasma is stable again. This behavior means that
for a given level of kinetic stability, it is possible for a
plasma to be more stable at lower beta and higher beta,
but less stable in between (a behavior observed in some
experiments2). This, it should be reemphasized, is with
a constant level of kinetic stability; ie. no evolution to a
favorable rotation profile (for example) must be invoked



FIG. 4. a) No-wall and with-wall βN limits for NSTX vs. pressure peaking only, given by βn=1
N,no−wall = 1.91p0/⟨p⟩ (p0/⟨p⟩ < 2.25)

and βn=1
N,no−wall = 4.3 (p0/⟨p⟩ > 2.25) [16], and βn=1

N,with−wall = 0.75 + 12.5/p0/⟨p⟩. b) βN vs. −δW n=1 for NSTX at p0/⟨p⟩ = 2,
showing the heuristic model in dotted lines and present reduced model in solid lines.

FIG. 5. a) Kinetic RWM stability diagram for NSTX at p0/⟨p⟩ = 2. The circles represent the unstable region for various values
of Cβ . b) Normalized growth rate vs. Cβ for four levels of kinetic effects, indicated by markers in a).

to explain this behavior. Of course as a plasma evolves in
time its kinetic effects will change and so the experimen-
tal “marker” of the plasma will move in the kinetic space
of the stability diagram or Fig. 5a, even as the size and
location of the unstable region is also changing in time.
We turn now to a discussion of the strategy for complet-
ing the reduced model for forecasting RWM stability in
real time by estimating δWK .

VI. THE REDUCED KINETIC MODEL

For the kinetic δWK term, full calculations with codes
such as MISK cannot be performed in real time. Kinetic
RWM stability theory has continued to be developed,
yielding greater complexity in recent years by the inclu-
sion of additional terms from such effects as anisotropy of
the plasma pressure26 and additional fluid27 and kinetic28

rotational effects. Here we wish to go in the opposite di-
rection and simplify kinetic theory to facilitate real-time
calculation while still retaining a high level of accuracy
suitable to serve a physics-based, improved disruption
avoidance system for the tokamak.
It was previously recognized that simplified model cal-

culations based on physics insight from kinetic stability
theory should be examined2,16. As one example, a very
simple forecast for RWM stability might involve monitor-
ing only the E×B frequency in real-time and comparing
to ranges of stabilizing bounce or precession frequency
resonances.
A more sophisticated model with collisionality17, plus

the addition of the effect of energetic particles10 on the
real part of δWK , will now be described. The reduced
kinetic model results, in terms of timing of warnings for
impending RWM instability, will then be tested against
an independently characterized NSTX database of RWM



disruptions. Ultimately the model’s effectiveness will be
judged by its ability to accurately forecast RWM stability
while still being lean enough to easily run in real-time for
multiple devices.
A previous effort to simplify the dispersion relation to

examine the nature of the roots of the equation29 made
the following simplifications. First, separation of the en-
ergetic and thermal particle contributions is natural, due
to the very different kinetic frequencies with respect to
the plasma rotation. Second, experience shows that at
the relatively low rotation levels in most present (and
nearly all future) devices, the most important type of ki-
netic resonance for RWM stability is that between the
plasma rotation and trapped particles with no bounce
harmonic (l = 0), but a precession drift motion. Further,
although profile effects certainly matter (kinetic theory
has shown the the rotation profile is important rather
than a scalar “critical” rotation9), for simplicity in the
present model we have chosen to omit the radial depen-
dence of the variables. We will show that, based upon
experimental experience with NSTX2, using average val-
ues inside the density pedestal is a reasonable way to
accomplish this. In the following ⟨ωE⟩ and ⟨ν⟩ represent
these average values for E×B frequency and collisionality
as described in Ref. [2]. Additionally, full experimental
radial profiles of necessary measured quantities such as
rotation may not be available (for example the real-time
velocity diagnostic for NSTX30,31 has four radial chan-
nels), so future real-time systems based on this reduced
kinetic model should be able to operate with limited pro-
file data. Finally, it is similarly necessary to neglect pitch
angle dependencies of frequencies as well. This set of con-
ditions leaves an expression for δWK of trapped ions,

δWK ∼ (2)
∫

∞

0

[

ω∗N + (ε̂− 3
2 )ω∗T + ωE − ωr − iγ

ω̄Dε̂+ lω̄bε̂
1

2 − iν̄ε̂−
3

2 + ωE − ωr − iγ

]

ε̂
5

2 e−ε̂dε̂.

Here we have made the energy dependencies of the var-
ious terms explicit by utilizing x̄, the constant value of
x at ε̂ = 1. Energy is normalized by temperature with
ε̂ = ε/T , and ω∗N and ω∗T are the density and temper-
ature gradient components of the ion diamagnetic fre-
quency.
Liu et al. have provided analytical solutions to the

above expression for various cases. Some of the sim-
plest of these are obtained in the limit of high plasma
rotation32 (also described in Ref. [33]), by retaining both
ions and electrons but neglecting collisions and energy
dependence34 (also described in Ref. [29]), or by neglect-
ing collisionality and plasma rotation32 (note that this
situation is most justified for energetic particles and re-
sults in a δWK independent of ωE and ν, similar to what
we will ultimately use).
In the present model we wish to make simplifying as-

sumptions, but we must retain the most critical physics
elements based on experience applying the full theory

to tokamak experiments. Therefore while neglecting the
growth rate and real mode frequency (γ and ωr) as much
smaller than ωE and neglecting the electron contribution
as much smaller than the ion one (electron collisionality
is
√

mi/me higher) are justified, neglecting collisions out-
right is not. In fact attempts have already been made to
examine collisionality in simplified models, and there it
was shown that collisions can play and unexpected role
- damping the stabilizing kinetic effects17. That work
also demonstrated that although energy-dependent colli-
sionality is the most complete model, energy-independent
collisionality can give similar results17. Using energy-
independent collisionality, Eq. 3 can also be solved ana-
lytically, as was first demonstrated by Liu et al.32, and
results in various expressions for the integral in Eq. 3
for regimes such as l = 0 trapped particles with preces-
sion motion only, l ̸= 0 trapped particles with ωD ≪ ωb,
and circulating particles with ωD ≪ ωt (the transit fre-
quency). These result in complex analytical solutions re-
lying on calculations of the plasma dispersion function32

(in fact these functions were compared and benchmarked
between the MISK, MARS-K, and PENT codes in Sec. V and
Fig. 10 of Ref. [33]).
Further simplification of the equation for δWK by ne-

glecting energy dependence in the precession and bounce
frequencies has also been performed and used to gain
insight on the role of collisions near and away from sta-
bilizing resonances (see Eqs. 5 and 6 of Ref. [17]). How-
ever, such a simplification loses some of the behaviours
of the full model (for example the resonant term in Eq. 6
of Ref. [17]). Though useful for gaining physics insight,
at this point it becomes clear that strictly simplifying
equations to reach the possibility of analytical solution
does not serve the present purpose. Instead it is much
more meaningful to construct, from scratch, a functional
form that is easily, quickly calculable and that relies on a
few important, measurable parameters. Any such model
must capture the essential physics learned from the suc-
cessful application of kinetic theory to experimental re-
sults in recent years. Namely:

• Resonance between ωE and ωD of trapped thermal
ions at lower plasma rotation, and with ωb at higher
plasma rotation provides a stabilizing component
to δWK , but in between these the kinetic effects
are weaker, allowing for instability2,9.

• Energetic particles provide a stabilizing restora-
tive force that is relatively independent of plasma
rotation10 and the collisionality of those particles17.

• Increased collisionality tends to damp the ro-
tational resonance stabilization (see Fig. 3 of
Ref. [17]) and shift it to slightly lower rotation (see
Fig. 6 of Ref. [9]).

• The imaginary term of δWK from trapped thermal
ions tends to peak at lower plasma rotation than
the real part (see Fig. 8 of Ref. [10]) so that plasmas



move in kinetic stability space as rotation changes
in looping paths (see Fig. 5 of Ref. [9]).

To that end, Gaussian functions were used to represent
kinetic resonances in the present model. In the present
work resonances between the plasma rotation and ther-
mal particle motions are represented; energetic particles
are not yet included. The positions of the peaks in ⟨ωE⟩
are determined by typical experimental ranges of ωD and
ωb and the height, width, and position all dependent on
collisionality. The bounce resonance contribution was al-
lowed to continue to increase at high ⟨ωE⟩ to capture the
many bounce harmonics and circulating particle contri-
butions which provide stability at large rotation. Coef-
ficients for the functions were selected to reflect NSTX
experience.
The functional forms for the real and imaginary, pre-

cession and bounce δWK terms are,

δWK = a
⟨ωE⟩

ω
e

−

(

⟨ωE⟩
ω

−b

)

2

2c2 , (3)

where the normalizing ω is a representative value of ωD

or ωb, respectively. For the NSTX analysis, these quan-
tities were taken to be ωD = 2kHz and ωb = 10kHz. The
quantities a, b, and c, pertaining to the height, position,
and width of the peaks are given for this instance of the
model for NSTX in table I. Additionally, at large ro-
tation (greater than the bounce peak) the bounce δWK

term simply rises like 0.1(⟨ωE⟩ − ⟨ωE⟩peak). Figure 6
shows an example of these Gaussians for an NSTX case
at ⟨ν⟩ = 1kHz.

a b c

Re(δWK)
6

1

1+
(

4

9

⟨ν⟩
ωD

)

2 3
5

(

1 + 2
9

⟨ν⟩
ωD

)

precession

Im(δWK)
4.5 3

4

[

1

1+
(

4

9

⟨ν⟩
ωD

)

2

]

3
5

(

1 + 2
9

⟨ν⟩
ωD

)

precession

Re(δWK) 1+25
⟨ν⟩
ωb

1+
(

25

8

⟨ν⟩
ωb

)

2

11

6+75
⟨ν⟩
ωb

1
5 + 125

128

(

⟨ν⟩
ωb

)2

bounce

Im(δWK) 4
7

[

1+25 ⟨ν⟩
ωb

1+
(

25

8

⟨ν⟩
ωb

)

2

]

7
8

[

11

6+75
⟨ν⟩
ωb

]

1
5 + 125

128

(

⟨ν⟩
ωb

)2

bounce

TABLE I. Gaussian coefficients for Eq. 3 for the reduced ki-
netic model for NSTX.

Now that the form of δW versus these quantities is es-
tablished in the model, it is left to implement the model
by following the evolution of a plasma discharge in time
through the space of these quantities. Additionally, for

FIG. 6. Real (solid) and imaginary (dashed) parts of modelled
δWK for precession resonance (blue) and bounce resonances
(red) for NSTX with ⟨ν⟩ = 1kHz.

the fluids terms the previously discussed quantities of
p0/⟨p⟩, li, A, and βN must also be followed. The proce-
dure is simply laid out as such:

1. Quantities li, p0/⟨p⟩, and A are used in the
ideal beta limit model to calculate βN,no−wall and
βN,with−wall (Fig. 3a).

2. These ideal β limits and the measured βN give Cβ

(Fig. 3b).

3. Expressions for the fluid δW terms as functions of
Cβ that mimic DCON results give δWb and δW∞

(Fig. 3c).

4. The ideal δW terms give the fluid growth rate,
γfτw (Fig. 3d), and also set the unstable region
in a Im(δWK) vs. Re(δWK) stability diagram
(Fig. 5a).

5. Calculated ⟨ωE⟩ and ⟨ν⟩ are used in the reduced
kinetic model (Eq. 3) to calculate δWK .

6. Finally, δWK is used in the kinetic RWM dispersion
relation (Eq. 1) to find γτw.

Therefore, for step 5 we now show ⟨ωE⟩ and ⟨ν⟩
vs. time for NSTX discharge 139514 in Fig. 7. Note that
the quantities shown in the plots are moving averages
(as described for Cβ in Fig. 3b) for clarity of presenta-
tion, but the quantities used as inputs to the calculation
of δWK (and subsequently γτw) are used at the available



FIG. 7. Moving averages of ⟨ωE⟩ (red) and ⟨ν⟩ (blue) for
NSTX discharge 139514 vs. time. The colored markers indi-
cate the point at which the plasma reaches the correspond-
ingly colored Cβ levels as in Fig. 3b.

FIG. 8. Time-varying stability diagram for NSTX discharge
139514 where the colored circles indicate the unstable region
at different levels of Cβ (using the colors in Fig. 3b). The
red line indicates the moving average of the trajectory of the
plasma through complex δWK space with time and the col-
ored markers indicate the point at which the plasma reaches
the correspondingly colored Cβ levels.

higher resolution time points and not the moving average
values.
Through the changing levels of total (precession plus

bounce terms) real and imaginary δWK , as in Fig. 6, one
can then plot the trajectory of the plasma in Re(δWK)
vs. Im(δWK) space. This is shown in Fig. 8 along with
the unstable regions for various levels of Cβ . The circu-
lar lines indicating the unstable boundary correspond to
γτw = 0. Inside these circles γτw is positive, and there-
fore the kinetic RWM is unstable. It must be remem-

FIG. 9.

FIG. 10.

bered that as the plasma parameters change in time in
the δWK space, at the same time the size of the unstable
region is changing as well. Within the plasma trajectory
shown, colored circular markers are placed indicating the
times that the plasma crosses the corresponding Cβ level
(Fig. 3b). So, for example, in this case at the time in the
discharge when Cβ = 0.2 (cyan) the plasma is just out-



FIG. 11. Trajectory of NSTX discharge 139514 through ⟨ωE⟩
vs. ⟨ν⟩ space, with colored regions and markers as in Fig. 8.

side the unstable region while by the times of Cβ = 0.4
(green) and Cβ = 0.6 (magenta), δWK has decreased due
to the changing ⟨ωE⟩ and ⟨ν⟩ and additionally the unsta-
ble region has increased in size due to the fluid terms at
the larger Cβ . The combined effect is that the plasma is
now inside the unstable region.
Alternatively, one can show a stability diagram in the

⟨ωE⟩ vs. ⟨ν⟩ space at a given level of Cβ by plotting con-
tours of γτw (similar to Fig. 6 in Ref. [9]). These contours
are calculated for the entire space because the location in
(⟨ωE⟩,⟨ν⟩) determines δWK in the reduced kinetic model
and for a given Cβ this determines γτw. Here we show
the trajectory of the same plasma in this space as time in-
creases and ⟨ωE⟩ increases while ⟨ν⟩ decreases (Fig. 11).
Similarly to Fig. 8, in this type of diagram the unstable
region changes with time as Cβ changes. Here we use the
same colored lines to indicate the expanding unstable re-
gion, and one can see the same crossing of the plasma
into the unstable region as in Fig. 8.

VII. APPLICATION OF THE MODEL TO AN NSTX
DATABSE

It is worth restating that all of the above analysis and
plotting has been performed post-discharge on NSTX
data. The future goal is to implement this model in real
time, in which case the crossing (or even the approach) to
the unstable region would be used in a disruption avoid-
ance system to trigger a plasma control system (for exam-
ple plasma rotation control) to maintain stability. Dis-
ruption avoidance via plasma rotation profile control12

is close to becoming reality in NSTX-U with the recent
implementation of real-time velocity diagnostics31.
In the meantime, however, it is useful to apply the

reduced model to a database of NSTX RWM discharges

to determine how accurately the marginal stability point
of the kinetic RWM is evaluated. For a large number of
discharges we will presently show their trajectories on a
stability map as in Fig. 11. Also it is natural to simply
plot the forecast RWM growth rate as a function of time
(the kinetic equivalent of the ideal growth rate shown in
Fig. 3d). Here we plot γτw vs. time before the DIS event
warning, the time of disruption (as determined by tests
within DECAF). For discharges without an RWM induced
disruption, the time DIS effectively indicates the natural
end time of the discharge by other means.
These plots are shown in Fig. 12 for 20 discharges with

unstable RWMs in NSTX (color) and 8 without (black).
Unstable RWMs were determined to have occurred in
these discharges by both independent assessment of rel-
evant signals as well as a threshold test on a poloidal
magnetic signal within DECAF (DECAF characterization of
disruption event chains, including the RWM event, will
be the subject of a separate paper). The colors indicate
the warning time before disruption when the model in-
dicates the RWM should be unstable (γτw crosses zero).
Red is for a single case of < 0.1s warning, orange five
cases with 0.1 − 0.2s, green eleven cases with 0.2 − 0.3s
and blue three cases with 0.3− 0.32s warning.
One can see quite clearly a difference in the evolution

in ⟨ν⟩, ⟨ωE⟩ space between the stable and unstable dis-
charges. While all the discharges drop in collisionality
with time as they evolve, due to increasing temperature,
in the unstable cases a turn towards higher ⟨ωE⟩ leads
into the unstable region. This is avoided in all the stable
cases shown here (in fact, some drop towards zero ⟨ωE⟩
leading one case to just barely touch γτw = 0).
In addition to the cases shown in Fig. 12, many others

were analyzed. In fifteen additional RWM unstable cases,
the model also showed γτw crossing zero into the unsta-
ble region, but in these cases this occurred well before
the disruption and in fact were all correlated with minor
disruptions that occurred earlier in those shots. Here a
minor disruption is defined as a 10% drop in both βN

and stored energy within 0.1s, that subsequently recov-
ers. In each of the fifteen cases considered, γτw crossed
zero within 0.1s of a minor disruption. There were, how-
ever, other minor disruptions in the total database of
shots that did not correlate with the reduced kinetic
model warning; whether these are due to other causes
will be further explored.
In any case, there were 35 discharges in the database

where the RWM became unstable leading to a disruption
in which the reduced kinetic model predicted instability
within 0.32s of the disruption or 0.1s of an earlier minor
disruption. Additionally in three experimentally RWM
unstable cases, the model gave a warning > 0.4s in ad-
vance without any related minor disruption, which we
consider a false positive because it occurs highly sepa-
rated (earlier) in time from the time of DIS. Finally, this
initial model sometimes misses unstable RWMs. There
was one case in which γτw barely didn’t cross zero, three
cases with very low Cβ disruptions that the model missed,



FIG. 12. Stability diagram (left) and forecast growth rate vs. time leading to disruption (right) for unstable (colored) and
stable (black) NSTX discharges.

and three cases where ⟨ωE⟩ was in what the model consid-
ered to be a stable range, yet an unstable RWM occurred.
Altogether the model failed to predict an unstable RWM
at all in 7 out of 45 experimentally unstable cases, or
15.6%. The success rate of the model is surprisingly high
given its initial state and relative simplicity, and that it
has not been optimized. Further research will aim to
improve the success rate.

Finally, in addition to the eight successful predictions
of stability for the experimentally stable discharges shown
above, five more stable discharges were tested. In three of
these cases the discharge evolution in ⟨ν⟩, ⟨ωE⟩ space was
very similar to the unstable cases shown in Fig. 12, but
nevertheless the discharge remained stable. It is possible
that in these cases some other stabilizing effect not cap-
tured by the reduced model was present, but this remains
to be determined. In two other experimentally stable
cases, the RWM warning was triggered by the reduced
model because ⟨ωE⟩ went to zero (hints of this behavior
also appear in some of the discharges in Fig. 12). The
unstable region at ⟨ωE⟩ ∼ 0 is present in the model due
to theory expectation, but has not yet usefully captured
an unstable RWM in our NSTX analysis. This region
could be eliminated in the model since we are interested
in improving the model’s usefulness whether or not it
agrees perfectly with theory, but this requires further in-
vestigation. If those cases were eliminated then 10 out of
13, or 77%, of stable high β, long-pulse NSTX discharges
analyzed were predicted stable in the reduced model.

VIII. DISCUSSION AND CONCLUSIONS

A reduced kinetic RWM model has been derived that
does well in initial tests to reproduce experimental ki-
netic RWM marginal stability points in NSTX. There
are several elements of the present reduced kinetic model
that may be improved. First, some factors are presently
missing that may be added in the future to improve the
accuracy, such as the effect of energetic particles. Second,
the need for relative simplicity may naturally mean that
the dynamics of instability in some cases is missed. For
example, in the present model the parameters ωD and ωb

are left constant for all plasmas in a given machine (here
NSTX). In some cases, then, the unstable region in the
stability diagram must be not quite correct. One might
imagine in the future these parameters could change from
shot to shot, and in time as well, but this would add a
large degree of complexity to the model. We have taken
the approach that what is most important is having a
broad model which can encompass most of the common
RWM instability issues. False positives or early warn-
ings may mean that an actuator based on this model
will sometimes unnecessarily act upon the plasma when
it was still stable (changing the rotation profile back to a
“safer” profile, for example), but this is perfectly accept-
able because the actuation is not meant to be a disruptive
mitigation, such as massive gas injection. In the present
model we have purposefully made a larger unstable re-
gion to minimize missed instabilities. This does lead to
an abundance of early warnings. For example, here we
have considered warnings up to 0.32s prior to disruption



to be legitimate RWM warnings, despite that this is a
long time scale compared to the dynamics of the mode.
Again, this is considered acceptable because of the con-
servative nature of the response to the warnings. Despite
the large unstable region, the simplicity of the model may
mean that it sometimes misses RWM instabilities (as we
have seen in the database). This may also be acceptable,
though, if the reduced model is not the only piece of the
disruption avoidance system focused on RWMs. For ex-
ample, active feedback and a physics-based state-space
controller3 should also be operating at the same time.
In conclusion a reduced kinetic stability model has

been implemented in DECAF with the ultimate goal of
real-time RWM stability forecasting. The model is based
upon the successful kinetic modification of ideal stability
theory and replicates, more simply, the effects of stabi-
lizing resonances of mode-particle interaction in E × B
frequency, collisionality space. The reduced model also
incorporates parameterized models for the ideal no-wall
and with-wall stability limits, which are shown to be in
good agreement with DCON code calculations. The model
has been tested on a database of NSTX discharges in-
cluding discharges experimentally stable and unstable to
the RWM. Good success has been achieved to date in sep-
arating those discharges on the stability map, predicting
unstable discharges as unstable in the model and stable
discharges as stable.
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