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Abstract

Efficient high harmonic fast-wave (HHFW) heating on the National Spherical Torux eXperiment

Upgrade (NSTX-U) would facilitate experiments in turbulence, transport, fast-ion studies, and

more. However, previous HHFW operation on NSTX exhibited a large loss of fast-wave power to

the divertor along scrape-off-layer field lines for edge densities above the fast-wave cutoff. It was

postulated that the wave amplitude is enhanced in the scrape-off layer due to cavity-like modes,

and that these enhanced fields drive sheath losses through RF rectification. As part of ongoing

work to confirm this hypothesis, we have developed a cylindrical cold-plasma model to identify

and understand scenarios where a substantial fraction of wave power is confined to the plasma

periphery. We previously identified a peculiar class of modes, named annulus resonances, that con-

duct approximately half of their wave power in the periphery and can also account for a significant

fraction of the total wave power. Here, we study the influence of annulus resonances on wave-field

reconstructions and find instances where the annulus resonant modes dominate the spectrum and

trap over half of the total wave power in the edge. The work is part of an ongoing effort to deter-

mine the mechanism underlying these scrape-off layer losses on NSTX, identify optimal conditions

for operation on NSTX-U, and predict whether similar losses occur for the ion-cyclotron minority

heating scheme both for current experiments and future devices such as ITER.
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I. INTRODUCTION

High-harmonic fast-wave (HHFW) heating is a promising heating scheme for the National

Spherical Torus eXperiment Upgrade (NSTX-U). HHFW compliments neutral beam injec-

tion by heating discharges without particle or momentum input. Efficient HHFW heating

would enable experiments in transport studies [1], low-rotation scenarios, and fast-particle

modes [2]. Furthermore, as the plasma-facing tiles of NSTX-U transitions from graphite to

high-Z metal wall in the coming years, HHFW may play a crucial role in impurity expulsion

via central RF heating, as demonstrated in other devices [3, 4].

Unfortunately, efficient fast-wave heating was difficult to achieve in certain NSTX scenar-

ios. Poor heating efficiency was observed for lower phasing and lower toroidal field [5, 6] but

improved with the lower scrape-off-layer (SOL) density provided by lithium wall condition-

ing, provided that the machine was not vented to produce lithium compounds [7]. The lower

heating efficiency is likely caused by a direct loss of wave power to the SOL, as evidenced

by the bright spirals that form in the upper and lower diveror [8] along field lines passing in

front of the antenna [9]. The heat flux under the spiral is about 2 MW/m2 for an applied

HHFW power of 1.8 MW. The losses are now though to be caused by significant fast-wave

propagation in the SOL when the righthand cutoff layer, defined by n2
‖ = R, with n‖ the

parallel refractive index and R the cold-plasma dielectric component from Stix notation [10],

was positioned close to the antenna [6]. Subsequent conversion of the wave power to a heat

flux would believed to be caused by RF rectification [11]. Full-wave simulations of NSTX

using the full-wave code AORSA [12] with the solution domain extended to include the

SOL [13] show that the wave amplitude in the SOL growing to large values when the SOL

density exceeds the cutoff density in front of the antenna [14]. We believe that NSTX-U

discharges can be taylored to achieve efficient HHFW heating, asthere have been several in-

stances of successful HHFW operation, including record-high Te obtained from HHFW-only

discharges[15], and plasmas that were 70% non-inductive [16].

We have developed a cylindrical cold-plasma model to identify scenarios where significant

wave power is trapped in the edge plasma. The model lacks many details included in

full-wave codes but provides a simplified framework to study wave-propagation across a

steep edge density gradient. We previously identified a peculiar class of modes, called

annulus resonances, that have enhanced loading resistance and propagate significant power
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in the edge [17]. They are thus strong candidates to explain the edge losses on NSTX, and

the present paper the annulus-resonances influence on the reconstructed wave fields. This

paper is structured as follows. Section II describes the model and the parameters chosen to

represent NSTX discharges. Section III explores properties of the annulus resonance with

respect to m, the azimuthal mode number. In Sec. IV, the impact of the annulus resonance

on the wave-field reconstruction is evaluated for a scan of the edge density. We find instances

where the annulus resonant modes dominate the spectrum and over half the wave power is

trapped in the edge. We find other instances where the annulus resonant modes are less

dominant and over 80% of the wave power propagates in the core. That being said, the

scaling of edge power percentage with edge density obtained in the model do not always

match experimental trends, and Sec. V discusses the potential influence of field pitch in this

discrepancy.

II. DESCRIPTION OF THE MODEL AND THE CHOICE OF PARAMETERS

The model geometry, illustrated in Fig. 1, consists of three radial regions: a core plasma,

a lower-density annulus, and an outer vacuum region. The annulus region represents the

SOL, and the vacuum region represents the extremely low density region behind the limiter

and inside the antenna box. The core extends to radius rc with constant density nc. The

annulus extends from r = rc to ra with constant density na. The vacuum region extends

from r = ra up to a conducting wall of radius rw. The two-step density profile surrounded

by vacuum is a coarse approximation of the actual density but is partially justified on the

basis that SOL density profiles are relatively steep near the separatrix but become nearly

flat in the mid- to far-SOL [18, 19]. The perpendicular wavelength of the fast wave in the

SOL is at smallest around 7 cm and is typically much larger; therefore, approximating a

gradient of scale length 1 - 2 cm [20] is not obscene. A uniform axial magnetic field is used

throughout. The use of a uniform magnetic field is partially justified since the focus of our

study in on the SOL, over which the magnitude and direction of the magnetic field does not

change appreciably, at least not as much as the density. The larger error comes in neglecting

the poloidal field, which is substantial on NSTX. Field angles tan−1(Bpol/Btor) up to 40◦

have been measured during HHFW experiments. The potential impact of this sizable tilt is

discussed in Sec. V, but we note that large RF field amplitudes were observed in simulations
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using only a toroidal field [21]. The antenna is modelled as current straps carrying current

in the θ direction at r = rs with a Faraday screen at r = rF .

n = nc

n = na
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FIG. 1: (a) Cartoon of the model showing the two-step density profile and orientiation of the

antenna straps. (b) Radial density profile (not to scale) along with radial position of antenna.

We chose values for the model parameters that resemble as much as possible NSTX

discharges. For radii, we use a core radius of rc = 0.88 m, an annulus outer radius of

ra = 0.915 m, a Faraday-screen radius of rF = 0.9315 m, and a wall radius of rw = 0.9715

m. The model core radius is chosen to keep the plasma cross-section area roughly the same

as shot 120740, yielding an effective circular radius of 0.88 m. The annulus width ra − rc
chosen to be 3.5 cm based on average values of the experimental “outer gap” as determined

from equilibrium magnetics for the L-mode discharges studied in Ref. [6]. The distance from

the edge of the annulus to the Faraday screen is fixed at 1.65 cm, the distance between the

outer boron nitride limiter and the Faraday screen at the midplane. The distances from the

Faraday screen to the antenna strap is likewise fixed at 2 cm, and from the antenna to the

vacuum wall at 2cm. nc = 5× 1019 m−3, f = 30 MHz, B = 0.32 T (approximate field at the

edge for a 0.55 T on-axis field).

A “mode” refers to a global solution which satisfies the wave equation in each region

and which is matched at interfaces. Modes assume the form Ẽz(r,m, k‖) = Ẽz(r) exp(imθ+

ik‖z − iωt), based on Fourier analysis in the axial and azimuthal directions. With k‖ given,

k⊥ is fixed in each region by the plasma regions by the cold-plasma dispersion: we use the

notation kfast⊥,c and kslow⊥,c for the fast/slow wave k⊥ in the core and corresponding notation

kfast⊥,a and kslow⊥,a in the annulus. The slow-wave and vacuum k⊥ are always cutoff. Radial

RF field profiles are found by the method detailed in Ref. [22]. Each region admits four
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independent solutions. In plasma, there are two fast-wave solutions and two (cutoff) slow-

wave solutions; in vacuum there are exponentially decaying and growing Ez (transverse

magnetic) and Hz (transverse electric) modes. By specifying the boundary conditions are

each interface, a system of equations is developed, whose simultaneous solution only exists

when a determinant, denoted by the function F (k‖) vanishes, as described in Ref. [17]. As

might be anticipated for oscillation in a bounded system, the roots of F (k‖) are such that

an integral number of half wavelengths occur in the radial profile of Eθ. Thus, we can label

modes with two numbers, (m,n), with m the azimuthal wavenumber and n the radial mode

number. Because the fast-wave dispersion gives k⊥ as a decreasing function of k‖, lower n

corresponds to larger k‖.

The total fields are found by inverse Fourier transform:

Eθ =
∑
m

∫
Ẽθ(r,m, k‖)J̃ant(m, k‖)e

imθ+ik‖zdk‖, (1)

The expression for Ẽθ contains F (k‖) in the denominator, so that the integral reduces to a

sum of residues, one for each mode. In Eq. (1), J̃ant(m, k‖) is the antenna spectral current

density and Ẽθ the azimuthal electric field per unit antenna spectral current density. The

amplitude of each mode is thus given by two factors: (i) the amplitude of J̃ant(m, k‖) at the k‖

and m of the mode, and (ii) the size of the residue, which is proportional to (dF (k‖)/dk‖)
−1.

As described in Ref. [17], the large amplitude of an annulus resonance is due to a near

vanishing of dF (k‖)/dk‖ independent of the particulars of the antenna configuration. Indeed,

this paper describes the relative influence between antenna spectral weighting and “bare”

mode amplitude in the relative strength of annulus resonances.

The antenna strap current distribution is modelled as twelve infinitely thin filaments. The

Fourier spectrum in the axial direction is therefore a sum of twelve plane waves. Given that

the height of the antenna straps is 68.9 cm, and using the effective plasma radius above, we

approximate the antenna angular span as 0.724 radians in the model. We assume a uniform

current distribution in the azimuthal (poloidal) direction due to the long vacuum wavelength

compared to the strap length. Given a phase difference of φ between straps, a strap spacing

of d and the current of each I0 and an angular span of α,

Jant(r, θ, z) = I0δ(r − ra) [Θ(θ + α/2)−Θ(θ − α/2)]×
12∑
i=0

δ(z + (11− 2i)d/2)e−iφ(11−i)/2 (2)
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where Θ is a Heaviside step function. Jant can be decomposed into a Fourier series in the

azimuthal direction and a Fourier transform in the axial direction

J̃ant(r,m, k‖) = I0δ(r − ra)J̃θ(m)J̃‖(k‖) (3)

J̃θ(m) =
sin(mα/2)

mπ
(4)

J̃‖(k‖) =
12∑
i=0

eik‖(11−2i)d/2e−iφ(11−i)/2 (5)

We note that J̃θ scales as 1/m and is nearly zero whenever mα/2 is an integer multiple

of π. This clearly favors low m modes. On the other hand, J̃‖ is peaked around k‖ =

φ/d. For NSTX, d = 21.5 cm, and typically phasings are π/6, π/2 and 5π/6. This model

clearly ignores (i) the finite width of the antenna straps, (ii) the radial feeds, (iii) effects of

sidewalls [23], and (iv) the change in current along the length of the straps.

In this paper, the term “mode amplitude” refers to the amount of wave power a mode

conducts axially along the cylinder. We denote the amplitude of the (m,n) mode as Pm,n

but will also express this as a loading resistance Rm,n defined by Rm,nI
2
0/2 = Pm,n, with I0

defined in Eq. (2). Pm,n can be calculated as the power output of the antenna, also refered

to as the induced EMF method [24].

Pm,n =
∫ 〈

Ẽ(r,m, k‖) · J̃ant(m, k‖)
∗
〉
dV, (6)

where < . . . > denotes time-averaging of complex quantities. Equivalently, Pm,n can be

computed by integrating the axial Poynting flux over the cross-section of the cylinder

Pm,n =
∫ r=rw

r=0

∫ θ=2π

θ=0
ẑ ·
〈
E(r,m, k‖)×H(r,m, k‖)

∗
〉
rdrdθ, (7)

Equation 7 gives the same result regardless of the z position used to evaluate the integral,

and both Eq. (6) and (7) yield the same result, as expected for a system without dissipation.

We emphasize that this cylindrical model is motivated by the need to qualitatively un-

derstanding and is not intended for precise calculations of loading resistances. The model

is cylindrical, so toroidal effects are clearly excluded. The model does not include any of

the surrounding the strap and Faraday screen; substantial research has been done to study

the effects of such components, especially when misaligned with the magnetic field and their

possible excitation of an electric field component parallel to the background magnetic field.

Finite-temperature and non-linear effects are omitted, including conversion to ion Bernstein
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waves, parametric decay instability, and RF rectification. Indeed, no form of dissipation is

included; wave energy coupled from the antenna propagates out the ends of the cylinder

without absorption. The mechanism converting HHFW power in the SOL to a divertor heat

flux is not yet identified, but dissipation by far-field RF sheaths is a leading candidate [11].

Core absorption is the usual Landau damping and transit-time magnetic pumping. We

presume that the high edge field amplitude of the annulus resonance will drive a high rate

of edge absorption relative to core absorption once the proper SOL damping mechanism is

identified and included, but this remains a crucial future step to verify. We also observe that

this present model treats the tokamak as a plasma-filled waveguide, whereas the AORSA

simulations including the SOL resemble more a plasma-filled cavity. We emphasize again

that the cylindrical model allows for relatively rapid computation time and faster explo-

ration of parameter space as well as the ability to resolve individual modes and separate the

contribution between fast and slow waves.

III. PROPERTIES OF ANNULUS RESONANCES OVER SEVERAL AZIMUTHAL

MODE NUMBERS

The annulus resonance condition is that a half-wavelength structure in Eθ fits into in the

combined annulus/vacuum regions. The modes that most nearly satisfy this condition have

a greatly enhanced loading resistance and propagate over half of their wave power in the

edge. What we call “annulus resonant modes” are the mode, for each m, the most closely

satisfies this condition and consequently has the largest loading resistance. Indeed, when

the bare loading resistances for all modes of a single m are plotted against k‖, the annulus

resonances, if present, appears as a peak in an otherwise monotonically decreasing curve, as

shown in Fig. 2. “Bare” loading resistance means omitting the factor of J̃ant(m, k‖) in Eq. (1);

alternatively, it is the loading resistance calculated using a point-source antenna Jant(θ, z) =

I0δ(z)δ(θ), which gives a uniform power spectrum. For the typical SOL parameters modelled

here, one generally finds at most one annulus resonance per m. It is possible at there is no

annulus resonance present, as shown in Fig. 2.

This section will focus on the behavior of these modes for different m. As mentioned,

there is typically at most one annulus resonance per m, but the k‖ of the resonance increases

with m. This is demonstrated in Fig. 3.a, where the bare loading resistance is plotted against
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FIG. 2: Bare loading resistance for m = 6 (black) and m = 0 modes (red) for an annulus density

of 1.5× 1018 m−3, showing typical loading-resitance curves with and without an annulus

resonance.

k‖ for select azimuthal mode numbers m. There is one annulus resonance for every m, and

the k‖-value of these peaks increases with increasing m. For low enough m (in this case,

m ≤ 0), this peak begins to disappear into the vacuum cutoff k‖ = ω/c. In Fig. 3.b, the k‖

value of the largest mode for each m is plotted against m; there appears to be a functional

relationship. Figure 3.c is similar to Figure 3.b except the vertical axis is kfast⊥,c , the fast wave

k⊥ in the core. This last plot appears piecewise linear with “breaks,” consecutive modes

that have similar kfast⊥,c .

Figure 3.b is important to understand. The “trajectory” of the annulus resonance condi-

tion through k‖−m space determines whether or not these modes will intercept the peaks on

the antenna spectrum. It is also important to understand how parameters such as magnetic

field and annulus density effect this “trajectory.”

A. Radial Mode Number n

In Sec. II, we introduced the radial mode number n as the number of zeros in the radial

profile of Eθ. We now derive approximate analytic expressions for the k‖-spacing between

modes of consecutive n and fixed m and also for consecutive m and fixed n. To start, most

of the zeros in the radial Eθ profile occur in the core because the core is the largest region

and also because kfast⊥ is realtively large there due to the higher density. The core fast wave

fields are linear combinations the Bessel functions Jm(kfast⊥,c (m,n)r) and Jm+1(k
fast
⊥,c (m,n)r)

and can be approximated by their asymptotic forms:

Jm(kfast⊥,c (m,n)r) ≈ sin
(
kfast⊥,c (m,n)r −mπ

2
− π

4

)
. (8)
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FIG. 3: (a) Loading resistance versus k‖ for m = 1 (black), m = 4 (blue), m = 7 (red), and

m = 10 (orange) modes. The k‖ of the annulus resonances increases with increasing m. (b) The

k‖ value of the largest mode for each m. (c) As in b) but with kfast⊥,c as the abscissa.

na = 1.5× 1018 m−3.

If we define φm,n to be the phase argument in Eq. (8),

φm,n ≈ kfast⊥,c (m,n)r −mπ

2
− π

4
, (9)

then φm,n is an approximation to the fast wave phase at the core-annulus boundary. We

then conjecture that φm,n+1 is greater than φm,n by a value of π to produce an extra zero in

the radial profile of Eθ in the core. Then

kfast⊥,c (m,n+ 1) = kfast⊥,c (m,n) +
π

rc
, (10)

where the notation kfast⊥,c (m,n) denotes the value of kfast⊥,c for mode of azimuthal number m

and radial mode number n. Similarly, we conjecture that φm+1,n ≈ φm, n, since both modes
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have the same number of zeros. This conjecture leads to

kfast⊥ (m,n+ 1) = kfast⊥ (m,n) +
π

2rc
. (11)

Increasing kfast⊥,c means decreasing k‖. In either case, the changes in k‖ is found by solving

the fast-wave dispersion:

n2
⊥ =

(R− n2
‖)(L− n2

‖)

S − n2
‖

. (12)

with n the refractive index n = ck/ω.

Both conjectures assume that any change in radial phase between modes occurs primarily

in the core and that the change in the combined annulus-vacuum region is small. The impact

of the phase change will be shown below. We note that the term ”radial phase” is a fuzzy

concept for the edge; the wave fields are radially cutoff in the vacuum and sometimes also

in the annulus. Moreover, discontinuous jumps in phase occur at sharp interfaces such as

the ones used in this model.

We now compare the predictions made by Eqs. (10) and (11) to the modes computed

by the model. Figure 4a plots the asymptotic core fast-wave phase for m = 14 modes,

φ14,n, as a function of n. The resulting plot is remarkably linear with slope π as predicted

above. At n = 65, there is a joggle in the linear trend. The n = 65 m = 14 mode is

an annulus resonance and will be discussed below. Figure 4b plots φm,65 versus m from

m = 1 to m = 18; for larger m, the annulus resonance disappears into the vacuum cutoff

k‖ = ω/c. For m < 14, the curve is very flat; the percent change in φm,65 from m = 1 to

m = 13 is 0.37%. This insensitivity of φm,n to n is consistent with Eq. (11). The deviation

from flatness is likely due to the much smaller variation in phase across the annulus/vacuum

regions. Like Fig. 4b, there is an abrupt change in phase at the annulus resonance m = 14

n = 65. Annulus resonances have a unique fast-wave phase at the core-annulus boundary

that is roughly π/2 radians out of phase with other modes [17], which explains the abrupt

phase change in both figures.

If the plot in Fig. 4 is extended to m < 1, the phase φm,65 would increase linearly. This,

however, is an artifact of the asymptotic phase φm,n. Because J−m(x) = (−1)mJm(x) for

integral m, the negative m modes behave similarly to their positive counterparts.
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FIG. 4: (a) Core phase φ14,n for the m = 14 mode as a function of n. A straight line with slope π

is drawn for reference. (b) Core phase φm,65 for the n = 65 radial mode as a function of m; note

the change in vertical scale. For both figures, na = 1.5× 1018 m−3.

B. Mode Families

This section explains the piece-wise linear dependence of kfast⊥,c of annulus resonant modes

versus m seen in Fig. 3. Figure 5a is a scatter plot of loading resistance versus k‖ for all

modes from m = 0 to m = 40. Figure 5a is similar to Fig. 3 but has a logarithmic vertical

scale, more azimuthal mode numbers, and no coloring to distinguish the m-values of modes.

This annulus resonant modes lie at the top of this figure. Certain sets of modes appear to lie

on smooth curves in Fig. 5; these curves rise to a crest and then decrease with increasing k‖,

with the envelope of these curves being the set of annulus resonant modes. These smooth

curves are not defined by modes of the same m value; Fig. 5b demonstrates this by repeating

the scatter plot with modes of the same m joined by colored curves. Instead, the smooth

curves are defined by all modes whose sum m+ n is equal; we refer to such sets as families.
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In Fig. 5c, modes with equal m + n joined by colored to differentiate families. For the

simulation used for Fig. 5, the m + n = 78 family is the dominant family for k‖ between 4

and 8 m−1 and contains the annulus resonances for m = 4 to m = 12. Above k‖ ≈ 8 m−1,

the loading resistance of the m + n = 78 family declines as the loading of the m + n = 79

family increases. The annulus resonances between k‖ = 8 m−1 and k‖ = 9.7 m−1 belong to

the m+ n = 79 family. The transition between families is emphasized by the m = 4 modes,

colored blue in Fig. 5b. The annulus resonance peak in loading resistance for these modes

is broader than usual (compare the m = 4 modes to the m = 7 and m = 10 modes in the

same figure, or to Fig. 2). This peak consists of two closely spaced and nearly equal modes,

each coming from a different family as the annulus resonance condition transitions from the

m+ n = 77 curve to the m+ n = 78 curve.
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FIG. 5: (a) Scatter plot of loading resistance versus k‖ for all modes. (b) Same as (a) with m = 4

(blue), m = 7 (red), and m = 10 (orange) modes joined by colored lines. (c) Same as (a) with

m+ n = 78 (blue), m+ n = 80 (red), and m+ n = 82 (orange) modes joined by colored lines.

Within a family, the outermost half wavelength varies relatively slowly across modes.

Figure 6 shows this variation for two cases: for fixed m and varying n, and for m + n
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fixed. In the lefthand column, m is fixed at 6, and n decreases by one from 73 (Fig. 6a)

to 72 (Fig. 6b) to 71 (Fig. 6c). The outermost half wavelength grows and sweeps across

the annulus-core boundary. The n = 72 mode most nearly satisfies the annulus resonance

condition and correspondingly has the largest amplitude. In the righthand column of Fig. 6,

n decreases by one and m increeases by one, going from m = 5 and n = 73 (Fig. 6d) to

m = 6 and n = 72 (Fig. 6e) to m = 7 and n = 71 (Fig. 6f). The outermost half wavelength

now varies almost imperceptibly and closely satisfies the annulus resonance condition. As

one continues to increment m and decrement n keeping m+ n constant, the outermost half

wavelength eventually growths larger than the edge width, losing the annulus resonance

condition and leading to the fall off in mode amplitude. However, as the m+ n = 78 family

falls off, the m + n = 79 family begins to satisfy the annulus resonance condition more

closely. It is currently not clear why holding m + n constant slows the variation in the

outermost half wavelength.

Radius [m] Radius [m]

E θ [V
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]
E θ [V
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FIG. 6: Radial profiles of Eθ for various modes. In the left column, m is fixed at m = 6 and n

decreases by one moving down. In the right column, m increases by one while n decreases by one

moving down.

The dependence of kfast⊥,c and k‖ of the annulus resonance onm, Figs. 3c and 3b respectively,

can be found by applying Eq. 11 within a family, so that m+ n = constant.

kfast⊥,c (m+ 1, n− 1)rc = kfast⊥,c (m,n)rc −
π

2
. (13)
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from which the k‖-dependence follows from the fast-wave dispersion, Eq.12. Increasing m

within a family decreases kfast⊥,c and increases k‖. Equation 13 is only valid within a family;

when the annulus resonance conditions transitions from one family to the next; there is a

discontinuity in kfast⊥,c , which explains the piecewise linear behavior seen in Fig. 3.c.

IV. THE ROLE OF ANNULUS RESONANCES IN WAVE FIELD RECONSTRUC-

TIONS

In this section, we evaluate the role that AR modes play in wave-field reconstructions.

While the AR modes have a very large unweighted loading resistance, they will not be

strongly excited if their k values differ too much from the antenna spectrum, then they will

not be strongly excited. The dependence of k‖ of the AR modes for different m studied

Sec. III (see Fig. 3) plays a central role: it defines the “trajectory” of the AR modes through

the k‖ − kθ plane and how closely it overlaps with the antenna spectral peak. This in turn

determines how strongly the AR modes are excited in comparison with non-AR modes.

Section IV A develops the mathematics for how wave power is partitioned between dif-

ferent regions in the model and defines the amount of power that oscillates between the

core and edge regions. Sections IV B and IV C present loading resistance calculations for

an inter-strap antenna phasing of π/2 and 5π/6 respectively for various annulus densities

keeping the core density fixed. While quantitative results are presented, we emphasize the

qualitatively behavior of the AR modes and their k-value relative to the antenna spectrum.

We find instances where (i) the AR modes account for a large fraction of the total wave

power, and (ii) a large fraction of the total wave power, over 50%, is “trapped” in the edge.

Indeed, the two features are fairly well-correlated, as expected. We also find instances where

the percentage of core loading is much larger, around 80%, and furthermore that the power

in the edge can propagate into the core. These finding are a promising explanation for the

edge loss of HHFW power on NSTX. However the case of π/2 phasing shows the opposite

trend of fraction edge loading with increasing annulus density; namely, in this model, power

trapping in the edge tends to decrease with increased annulus density. In the 5π/6 phasing

case, though, the power trapping is observed to increase initially with annulus density. This

may be explained by magnetic pitch, as discussed in Sec. V.
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A. The partition of wave power between core and edge

The expression for the Poynting flux Γz through a surface normal to the axial direction

is given as a double sum over all modes:

〈Γz〉 =
∑

m,n,m′,n′

∫ ∫ 〈
Ẽr(r,m, n)H̃∗θ (r,m′, n′)− . . .

Ẽθ(r,m, n)H̃∗r (r,m′, n′)
〉
e
i(k‖−k′‖)z+i(m−m

′)θ
rdrdθ.

In this sum, k‖ is the axial wavelength for the (m,n) mode, and k′‖ is for them′, n′) mode. The

cross-terms indicate interefence between modes. When integrating over the entire azimuthal

angle, when can apply orthogonality between the two asimuthal mode numbers m and m′.

When integrating over the entire radial domain, we then have orthogonality of n and n′.

In the case of both, then expression for axial wave power reduces to the sum of individual

fluxes from each mode with no interference between modes.

When integration occurs over the entire azimuthal angle but not over the entire radial

domain, the Poynting flux becomes

〈Sz〉 = 2π
∑
m,n,n′

∫ 〈
Ẽr(r,m, n)H̃∗θ (r,m, n′)− . . .

Ẽθ(r,m, n)H̃∗r (r,m, n′)
〉
e
i(k‖−k′‖)zrdr.

For each m, these terms are categorized as either diagonal terms (n = n′) and cross-terms

(n 6= n′). Diagonal terms have no z-dependence, but cross-terms do. If we integrate over

the core, then the diagonal terms define a fixed amount of power that remains in the core,

but the cross-terms define an oscillating power that can be added to and taken from the

core and given to the edge as one varies z. Likewise, when integrating over the edge, the

diagonal terms descrbe power that remains in the edge, which we refer to as “trapping” in

the edge. The oscillating power must be computed numerically at each z-location of interest.

A convenient and z-independent metric of the power available for oscillation is

Posc = 2π
∑
n6=n′

∣∣∣∣∫ 〈Er(r,m, n)H∗θ (r,m, n′)− . . .

Eθ(r,m, n)H∗r (r,m, n′)〉| rdr. (14)

Note that no power oscillates between modes of different m values. Also, if there is one

dominant mode for a given m, then the oscillating power will be a small fraction of the total

wave power contained in these m-modes.
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Annulus Loading Resistance [Ω] AR Loading

Density Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5× 1018 2.31 1.02 (44%) 1.29 (56%) 0.21 14% 97% 60%

1.0× 1018 3.96 1.91 (48%) 2.04 (52%) 0.74 27% 94% 63%

1.5× 1018 3.93 2.68 (68%) 1.25 (32%) 0.85 23% 81% 42%

2.0× 1018 5.58 4.18 (75%) 1.41 (25%) 1.31 19% 76% 34%

TABLE I: Loading resistance by region and the contribution of AR modes in each na. The

lefthand columns show the total loading, its partition into edge and core power, and the power

that oscillates between core and edge (Eq. (14)). In the righthand columns, “total” denotes the

percent contribution of the AR modes to the total loading, while“Edge” and “Core” columns

denote the percent contribution to each region. For instance, 97% in the “Edge” column means

that the AR edge power is 97% of the total edge power.

B. Current-drive phasing
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FIG. 7: Trend in loading resistance as na increases; circles: total loading, diamonds: core loading,

plus: edge loading, triangles: oscillating power.

The results of changing the annulus density na in the range of 5.0×1017 to 2.0×1018 m−3

are summarized in Table I and shown graphically in Fig. 7. The general trend with increasing

na over this density range is that (i) total loading increases, (ii) the fractional loading to the

core increases, and (iii) the percent contribution of the AR modes decreases. The increase
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in total loading with na results from increases in both AR and non-AR modes. The non-AR

loading steadily increases with increasing na, which improves core loading. Meanwhile the

AR loading is not monotonically increasing with na for reasons discussed below, and the AR

contribution decreases as na rises. Also, the amount of power that oscillates between the

edge and the core, Eq. (14), steadily increases from a small fraction (∼ 10%) to nearly the

full power in the edge. We might say that the power in the edge is no longer trapped there.

Figure 8 plots the percent loading in the core and edge as a function of z moving away from

the antenna. For na = 5.0× 1017 m−3 (Fig. 8a), the oscillating power is small, and the edge

power is close to its fixed value. For na = 2.0× 1018 m−3 (Fig. 8b), the power in the edge is

smaller, and a greater portion of it can propagate into the core. Absorption is not included

in this model, but is predicted to be strong for NSTX core plasmas [25]; we expect that any

wave power that penetrates the core will be absorbed there.
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FIG. 8: Percentage of power contained in the core (red) and edge (blue) as a function of axial

distance away from the antenna. Dashed lines indicated fixed percentage of power (Sec. IV A).

(a) na = 5.0× 1017 m−3, and (b) na = 2.0× 1018 m−3.

A more detailed perspective is afforded by Figs. 9a and 9b. Each figure contains a contour

plot of the antenna spectral power in the k‖−kθ plane. kθ is given as m/ra. Each contour line

denoting a factor of 2 change in spectral power. Each circle denotes a mode, with lighter

colors signifying a larger loading resistance. Only the largest fifty modes are plotted for

clarity; these modes account for about 90% of the total wave power. The diamonds denote

locations of the AR modes and show the AR trajectory through the k‖ − kθ plane relative

to the antenna spectrum. A diamond filled with a circle denotes an AR mode that is also
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Annulus Loading AR contribution

Density Total Core (%) Edge (%) Oscillating Core (%) Edge (%) Total (%)

0.5× 1018 0.79 0.62 (79%) 0.16 (19%) 0.03 3% 97% 23%

1.0× 1018 1.12 0.77 (68%) 0.35 (32%) 0.07 8% 97% 36%

1.5× 1018 1.63 1.05 (65%) 0.58 (35%) 0.20 14% 94% 43%

2.0× 1018 2.16 1.46 (67%) 0.71 (33%) 0.39 18% 91% 42%

TABLE II: Effect of raising annulus density on both total loading and contribution from AR

modes. Inter-strap phasing of 5π/6

in the top fifty modes. At na = 1.0× 1018 m−1 (Fig. 9a), the AR ridge lies directly on top

of the first azimuthal sideband, with m = 12 being the strongest AR mode excited. This

explains the relatively strong contribution of the AR modes for this density. Many non-AR

modes lie on the primary antenna spectral peak. In Fig. 9b, increasing na to 1.75×1018 m−3

moves the AR ridge off the sideband. At the peak of the axial spectrum (k‖ = 7.3 m−1),

the AR ridge lies near the node in the azimuthal spectrum at m = 8. This explains the

non-monotonic behavior in AR loading (Fig. 7. Also, for the strongest AR modes at the

m = 5, m = 6, and m = 7, neighboring modes of the same m are also strongly excited. With

several large modes of the same m, the power oscillating between core and edge increases,

as explained in Sec. IV A, this oscillation is caused by interference of modes of the same m.

As evidenced in Fig. 9a, typically there is only one mode strongly excited at each m in the

case of na = 1.0× 1018 m−3.

For the set of AR modes, the fraction of power conducted in the edge decreases from 86%

power at na = 5.0× 1017 m−3 to 56% at na = 2.0× 1018 m−3. This is because higher-m AR

modes conduct more power in the edge. Since the effect of increasing annulus density is to

move the AR ridge to the right in k‖ − kθ space, decreasing the m-value at which the AR

trajectory intercepts the antenna k‖ peak at k‖ = 7.3 m−1; see Fig. 10.

C. 5π/6-phasing: Heating phasing

For the NSTX antenna, 5π/6 inter-strap phasing avoids a phase discontinuity between the

sixth and seventh strap that would occur for π/2 phasing [26]. For 5π/6 phasing, the primary
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FIG. 9: Location of the AR ridge (diamonds) and largest 50 ((a) and (b)) of 100 ((c) and (d)

modes (circles) relative to antenna spectral power (contour lines). (a) pi/2 phasing and

na = 1.0× 1018 m−3, (b) π/2 phasing and na = 1.75× 1018 m−3, (c) 5π/6 phasing and

na = 1.0× 1018 m−3, (d) 5π/6 phasing and na = 2.0× 1018 m−3.

axial spectrum peak is at k‖ = 12.2 m−1. There is another second peak at k‖ = −22 m−1,

but the coupling to modes at such large |k‖| is weak enough to ignore. Table II and Fig. 11

show the loading calculations for this phasing. The total loading is reduced by roughly a

factor of three compared to π/2 phasing but does steadily increase as na increases. Similarly,

the core loading increases with na but at a slower rate than the π/2 case. The percentage

of power in the edge is substantially smaller than with π/2 phasing but is still significant,

around one third the total power. Contrary to the decrease in percent edge loading with na
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FIG. 10: Contour plot of antenna spectral power and annulus resonances (diamonds) for different

na: from upper left to lower right, na = 0.5, 1.0, 1.5, and 2.0× 1018 m−3. (a) π/2 interstrap

antenna phasing, and (b) 5π/6. Increasing na shifts the AR ridge closer to the primary antenna

spectral peaks.

seen for π/2 phasing, the percent edge loading for 5π/6 phasing rises as na is raised from 0.5

to 1.0×1018 m−1 but level off in the range of 1.0 - 2.0×1018 m−1. In this latter range of na,

the power available to oscillate between edge and core increases substantially. The behavior

of edge loading versus na is monotonically increasing, which constrasts the π/2 case and

will be discussed below. The percent contribution of the AR modes is similar to the percent

edge loading; for na = 0.5 and 1.0× 1018 m−3, it is substantially lower than in the π/2 case

but rises instead of decreases with na.

Figures 9c and d show the na = 1.0 × 1018 m−3 and 2.0 × 1018 m−3 cases in the k‖ − kθ
plane. At 5π/6 phasing, the AR trajectory now intercept the axial peak in antenna spectrum,

k‖ − 12.2 m−1, at substantially higher kθ than in the π/2 case. For na = 1.0 × 1018 m−3

(Fig. 9c), the strongest modes are the m = 30, 31, and 32 AR modes, with relatively strong

contribution for the m = 38 and 39 AR modes, whereas for π/2 phasing the strongest

modes are m = 11, 12, and 13 AR modes. For na = 2.0× 1018 m−3 (Fig. 9d), the strongest

modes are the m = 22 and 23 AR modes, whereas for π/2 phasing the strongest modes

are m = 5, 6, and 7 AR modes. It is only because the AR modes have such large “bare”

loading resistances that they are the most strongly excited modes even when they lie on the

third and fourth azimuthal sidelobes of the antenna spectrum. However, since the azimuthal
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FIG. 11: Trend in loading resistance as annulus density is increased; stars: total loading,

diamonds: core loading, plus: edge loading, triangles: oscillating power.

spectral weighting of the antenna scales like m−2 (Eq. (4)), the percent AR contribution is

therefore not strong for 5π/6 phasing. In fact, the wave power is more evenly distributed

between modes; at π/2 phasing, 90% of the total power was carried by ∼ 50 modes, whereas

for 5π/6 phasing it takes ∼ 100 modes to reach 90%.

Finally, the “slope” of the AR ridge at k‖ = 12.2 m−1 is greater than at k‖ = 7.3 m−1,

so the AR ridge is likely to cross two adjacent azimuthal sidebands and is less likely to lie

in a null between them as in Fig. 9b of the π/2 case. This explains why the edge loading

increases monotonically with na for 5π/6 phasing, in contrast to π/2 phasing. Also, for the

same change in na, the m-value of the strongest AR modes will drop more for 5π/6 phasing

than for π/2 phasing.

V. DISCUSSION

The previous sections presented a conceptual framework in which the AR modes form a

ridge in the k‖ − kθ plane, and that increasing the annulus density, for the current model

parameters, moves this ridge closer to the peak in antenna spectrum. For π/2 antenna

phasing, the model predicts that the fraction of power trapped in the edge decreases as

the annulus density is raised. This contradicts operational experience [6] and also results

from full-wave calculations [14]. However, as the model does reproduce features of the

experiments, such as over 50% of the wave power being trapped in the edge, it is important
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to see if varying certain model parameters changes the AR trajectory relative to the antenna

peak. Such parameters to vary include the core density and annulus width, which will be

much larger for discharges with neutral beam injection.

We focus here on the potential role of field tilt of NSTX. Being a spherical torus, NSTX

has a relatively weak toroidal field and a correspondingly large magnetic pitch at the out-

board side, typically 30◦ to 40◦. A preliminary approach to incorporate pitch is to rotate

the projection of the mode k-vectors in the kz − kθ plane. Figure 12 shows how a rotation

of 30◦ can move AR trajectory relative to the anntenna spectral peak for 5π/6 phasing, and

the effect is quite dramatic compared to the unrotated case of Fig. 10b. The rotated AR

modes are decreased in kθ, which would greatly increase their amplitude since the azimuthal

spectral weighting scales as m−2. Also, since the AR trajectory it is more horizontal (aligned

with the kz axis), we expect a broad range of AR modes to be excited by axial sidebands

of the antenna spectrum. While these speculations are based on a very coarse prescription

of simply rotating k, it does suggest that field pitch could have a profound impact on the

model and is worth studying in a more comprehensive treatment.

FIG. 12: Effect of a 30◦ rotation on the position of the annulus resonance ridge relative to the

antenna spectral peaks for different densities: 0.5× 1018 m−3 (purple), 1.0× 1018 m−3 (orange),

1.5× 1018 m−3 (blue), 2.0× 1018 m−3 (red)
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VI. CONCLUSIONS

In a cylindrical magnetized cold-plasma model with a two-step density profile, there exists

a special class of modes that fit a half wavelength in the combined annulus-vacuum regions,

have a large loading resistance, and propagate a large portion of their wave power in the

edge. There is typically at most one such mode per azimuthal modenumber m, and the

k‖ value of this mode increases with m. For the model parameters selected for this paper,

the underlying reason behind this relationship between k‖ and m is because modes with

the same value of m + n, with n the number of radial nodes, maintain the half wavelength

condition over a wide range of m. Viewed in the k‖ − kθ plane, these modes lie on a

trajectory whose distance from the antenna spectral peaks changes with parameters such

as annulus density. We have computed the relative contributions of annulus resonances and

non-annulus-resonant modes as well as the fractional loading to the edge and core regions

over a scan of annulus density. As expected, edge loading is large when the AR modes

contribute a substantial fraction to the total loading. We note cases where over half of the

total wave power propagates in the edge with little flux of power between the edge and core.

However, while total loading always increases with annulus density, the edge loading behaves

non-monotonically for the π/2-phasing case, as the AR ridge moves onto and off of azimuthal

sideband of the antenna spectrum. In the case of π/2 phasing, this leads to the results that

the fraction of power coupled to the core improves with edge density, in contradiction to

experiments and full-wave computations. The case of 5π/6 phasing shows a degradation in

core loading as the annulus density increases in the range of 0.5− 1.0× 1018 m−3 but levels

off in the range 1.0− 2.0× 1018 m−3. Magnetic pitch could play an important role; a coarse

treatment indicates that rotating the k vectors of modes by the magnetic-pitch angle at the

antenna may bring the annulus resonance trajectory closer to the main spectral peak of the

antenna, resulting in a large fraction of power trapped in the edge.
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