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Abstract 
 

Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus 

such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is 

of the order of the sonic speed as observed in National Spherical Torus Experiment [Nucl. 

Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and 

bootstrap current density are modified by a factor of the order of the square of the toroidal Mach 

number. The consequences of the orbit squeezing are also presented. The theory is developed for 

parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the 

transport modeling is discussed.   
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I Introduction 

 

 A transport theory for the potato orbits in the region near the magnetic axis has been 

developed for tokamaks [1-3]. The toroidal flow speed in that region is assumed to be the first 

order in the standard poloidal gyro-radius ordering in the theory. It is observed that the toroidal 

flow speed in the near axis region in National Spherical Torus Experiment (NSTX) is a 

substantial fraction of the ion thermal speed, i.e. the toroidal Mach number approaches unity due 

to strong neutral particle beam injection, which  can affect the plasma equilibrium [4]. Thus, it is

necessary to extend  the theory to take finite  toroidal flow speed into  account to have a better

description of the  transport processes in  that region. We develop such a theory here for the

tokamak and spherical  torus. It is found that transport  fluxes such as the radial ion heat

flow, and  bootstrap current density are increased by a factor of the order of square of Mach

number,    V/vti where V is the plasma flow speed in the toroidal direction, and vti is the plasma 

ion thermal speed. 

 

 

 It is shown in Ref. [2] that flux surface and radially averaged ion heat flow remains finite 

as poloidal flux function ψ -> 0, and can be understood by a random walk process in ψ. The 

fundamental reason that such a description is possible is because dT/dψ is a constant for a 

parabolic (in radius r) temperature profile, i.e., T = T0 [1 – (ψ⁄ψ0)]. Here, ψ0 is the radial scale 

length in ψ for the temperature profile. In this case, ion heat conductivity cannot be understood 

in terms of a random walk process in r, a fundamental difference from the transport theory away 

from the magnetic axis.  The reasons that it cannot be described by a random process in r are that 

(1) dT/dr is not a constant in r for a parabolic profile in r; (2) r is comparable to the width of the 

potato orbits ∆r; and most importantly (3) r is a variable not a parameter in contrast to the 

transport theory valid away from the magnetic axis region. Also because r ∼∆r, transport fluxes 

do not vary on the scale of r in the collisionless regime, and the transport fluxes are radially 

averaged as defined in Ref.[2]. Since the fluxes are radially averaged, they do not diverge to 

infinity as r approaches the magnetic axis. For an ion temperature profile that is different from a 

parabolic profile, e.g., T = T0 [1 – (ψ⁄ψ0)n] with n  > 1,  ion heat flow is not a random walk 
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process and the calculation is more tedious. We plan to develop such a theory when the needs 

arise.  In this paper, we limit the theory to the parabolic plasma profiles. For simplicity, we also 

neglect the effects of the orbit squeezing [5] because the squeezing factor S  = 1 + (I /Ω)2 [(e d 

2Φ/ d 2ψ)/M ] is practically unity for the angular velocity profile shown in Fig.1 with the 

poloidal flux at the edge being 4×107 Maxwell. Here, I = R Bt , Bt  is the toroidal magnetic field 

strength, R is the major radius, e is the electric charge, Ω is the gyro-frequency, and M is the 

mass. We, thus, neglect d 2Φ/ d 2ψ term in illustrating the theory for simplicity and only display 

the results of including d 2Φ/ d 2ψ term for the sake of completeness. Here, Φ is the leading 

order (in the standard poloidal gyro-radius ordering) electrostatic potential. Note that -d Φ/ d ψ is 

the radial electric field that is driven by the neutral particle beam injection. We assume that Φ is 

a function of ψ. 

 

 It is not surprising that the transport fluxes are intimately related to the fraction of the 

trapped potatoes as shown in Ref.[2] and here just as those transport fluxes calculated for the 

region away from the magnetic axis depend on the fraction of the trapped bananas. However, 

unlike the fraction of the trapped bananas that can be defined locally in r, the fraction of trapped 

potatoes cannot be defined locally in r because the width of the potato orbits comparable to r. It 

is only meaningful over a width of the order of a potato width. Thus, one does not expect it to 

vary significantly over a distance of the order of the potato width. For this reason, it is accurate 

to calculate transport fluxes that are variational using analytic orbit formulae that describe all 

particles that pass the magnetic axis as is done in Ref.[2].  

 

 We can apply the results of the theory for transport modeling. Because transport fluxes in 

the theory are radially averaged besides the averaging over the poloidal angle, the heat flow is 

finite in the near axis region. We suggest that one balance the calculated heat flux with the 

radially integrated heat source over a width of the order of a potato width and determine a 

temperature gradient in ψ. This gradient in ψ can be employed as a boundary condition in the 

transport modeling. 
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 The remainder of the paper is organized as follows. In Sec. II, we extend the analytic 

descriptions of the potato orbits originally developed in Ref.[2] to include the finite toroidal flow 

speed. We employ these analytic orbit formulae to calculate the ion transport fluxes in Sec. III.  

We also state the results that include the orbit squeezing effects there. In Sec. VI, we calculate 

electron transport fluxes. We discuss the applications of the results for the transport modeling in 

Sec.V. Concluding remarks is given in Sec. VI. The flow pattern for electrons is presented in 

Appendix A. In Appendix B, we show the effective parallel ion viscous force. 

 

 

II Analytic Potato Orbits with Finite Toroidal Flow Speed 

 
(A) Ion Potato Orbits 
 

Potato orbits can be described in terms of the constants of motion [6-8]. We follow the 

procedures developed in Ref.[2] closely here. We show that the main differences between the 

results presented here and those in Ref.[2] are in the orbit width scaling, pitch angle parameter, 

and the fraction of the trapped potatoes by a factor of the order of the square of the toroidal Mach 

number. 

 

 The toroidal flow velocity associated with d Φ/ d ψ is [9] 

 

V = R ω z ,       (1) 

 

where V is the plasma velocity, ω = -c Φ′ is the toroidal rotation angular velocity, prime denotes 

d /d ψ , c is the speed of light, and z is the unit vector in the toroidal direction. We follow the 

poloidal gyro-radius ordering used in Ref.[9] here. Note that ∇•V = 0. We assume that R ω ∼  vti. 

A typical measured profile for ω as function of poloidal flux in NSTX is shown in Fig.1.[4] There 

R ~ 1 m; ion temperature ~ 1.6 keV. Thus, the toroidal Mach number is of the order of unity

in NSTX near the axis region. Note that V is the common (to all plasma species) toroidal 

velocity. Thus, it produces no friction forces among plasma species. Because of the toroidal 
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symmetry, the toroidal canonical angular momentum Pζ is conserved. Assuming Bp << B, Pζ can 

be approximated by 

 

    Pζ = ψ - I v|| /Ω,      (2) 

 

where v||  is the parallel (to B, the magnetic field) particle speed, and Ω = eB/Mc is the gyro-

frequency,. We neglect the subscript that denotes the plasma species for simplicity. Taking into 

account the toroidal velocity in Eq.(1), we can express Pζ as 

 

   Pζ = ψ - I v||
′
 /Ω - I R ω/Ω,     (3) 

 

where v||
′
 = v||  - R ω.   

 

The energy is conserved. The energy per unit mass is 

 

  E = (v||
′
 
 + R ω.)2 /2 + µB + e (Φ + Φ1)/M ,     (4) 

 

where µ = v⊥
2/2B is the magnetic moment, Φ1(ψ,θ) = 〈Φ1〉+ 1Φ ~ is the electrostatic potential: 

〈Φ1〉 driven by the plasma gradients and 1Φ ~ by the toroidal rotation ω, and the angular brackets 

denote the flux surface average. The E×B velocity associated with 〈Φ1〉 is of the order of (ρp /a) 

vt where E is the electric field, ρp is the poloidal gyro-radius, a is the minor radius, and vt is the 

thermal speed of the particles. The potential variation in the flux surface 1Φ  resulted from the the 

toroidal rotation for a Z =1 plasma is [9] 

 

  1Φ = Mi ω
2 (R  2 - 〈 R  2 〉)/[2e i (1+Ti / Te )],    (5) 
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where Z is the charge number of the ions, Mi  and e i are ion mass and charge respectively, Ti  is 

the ion temperature, and Te  is the electron temperature. Using Eqs.(3) and (4), and expanding Φ 

=  Φ0 + Φ0 ′ (ψ-ψ0), we obtained a reduced particle energy per unit mass [9]: 

 

  E = v||
′
 
2 /2 + µB  - MR 2 ω2 + e Φ1/M .    (6) 

 

 We can derive an orbit equation in the region near the magnetic axis following the 

procedure shown in Ref.[2] using constants of motion: Pζ , E in Eq.(6), and µ. Assuming inverse 

aspect ratio ε < 1, we find 

 

(ψ-ψ0)2 + 2(I v||0 ′ /Ω0)(ψ-ψ0) + 2(I /Ω0)2 [v||0 ′ 
2+µB 0+R 2 ω2(Ti /Te )/(1+Ti / Te )+ 

 

 (Ω0 v||0 ′/e I )2Mc R 2 ω ](ε0 cosθ0 - εcosθ) = 0.    (7) 

 

The subscript  ‘0’ in Eq.(7) indicates the quantity is evaluated at a position (ψ0, θ0). Comparing 

Eq.(7) with the potato orbit equation derived in Ref.[2], we see that the differences are in the 

radial drifts associated with the E×B  of 1Φ ~, the centrifugal force and Coriolis force, the third 

and the forth term in the square brackets in Eq.(7). The third term in the square brackets in Eq.(7) 

is a combination of the E×B  drift of 1Φ ~, and the drift due to the centrifugal force. The solution 

of Eq.(7) describes banana orbits if ε is assumed to be a parameter. The difference between a 

potato orbit and a banana orbit is that the variation of r in ε across a potato orbit cannot be 

neglected. Thus, the r variation in ε has to be take into account when we solve Eq.(7) for the 

potato orbits. Because we are interested in particles that pass through the magnetic axis, we 

choose ψ0 = 0. With this choice of ψ0, θ0 can be arbitrary. We relate ε to the radial variable ψ 

with the relation 

 

    ε = C1 ψ1/2,      (8) 
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where C1  = (2q/δIR )1/2 ,  q is the safety factor, and δ is the elongation parameter. Defining x = 

ψ1/2, and using Eq.(8), we obtain a cubic equation for the potato orbits 

 

 x 3 + 2(I v||0 ′ /Ω0) x  - 2(I /Ω0)2 C1  [v||0 ′ 
2+µB 0+R 2 ω2(Ti /Te )/(1+Ti / Te )+ 

 

   (Ω0 v||0 ′/e I )2Mc R 2 ω ]cosθ = 0.    (9) 

 

In obtaining Eq.(9), we neglect 〈Φ1〉′ because we assume the E×B velocity resulted from 〈Φ1〉′ is 

subsonic. Equation (9) has the same form as the Eq.(4) in Ref.[2] except the quantity in the 

square brackets is different which is a parameter. Thus, the solutions for the orbit formulae in 

Ref. [2] are valid for Eq.(9). The differences are in the definitions of x^ 

 

x^ ={(I /Ω0)2C1 [v||0 ′ 
2+µB 0+R 2 ω2(Ti /Te )/(1+Ti / Te )+ 

(Ω0 v||0 ′/e I )2Mc R 2 ω ]}1/3 ,    (10) 

 

and pitch angle parameter κ 

 

κ= (8/27) (I v||0 ′ /Ω0)3/{[(I /Ω0)2C1 ]
2[v||0 ′ 

2+µB 0+R 2 ω2(Ti /Te )/(1+Ti / Te )+ 

(Ω0 v||0 ′/e I )2Mc R 2 ω ]2}.     (11) 

 

The fraction of the trapped potatoes f t can be estimated from Eq.(11)  

 

   f t  ∼ (I vti C1
2 /Ω)1/3 (1+ R 2 ω2/ vti 

2)2/3,   (12) 

 

which is increased by an order of unity due to the finite toroidal rotation speed. 
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(B) Electron Potato Orbits 

 

 Electron potato orbits are affected by the toroidal sonic flow speed through the E×B drift 

driven by the poloidal potential variation 1Φ ~. We can use the standard forms for Pζ, and E for 

electrons. Following the procedures shown in Ref.[2], and Sec. II (A), we obtain the orbit 

equation for electrons 

 

(ψ-ψ0)2 + 2(I v||0 /Ω0)(ψ-ψ0) + 2(I /Ω0)2 [v||0
2+µB 0+R 2 ω2(Mi /Me )/(1+Ti / Te )](ε0 cosθ0  

 

- εcosθ) = 0.      (13) 

 

The gyro-frequency in Eq.(13) is the electron gyro-frequency. The cubic equation that governs 

the electron orbit trajectory in the near axis region is 

 

x 3 + 2(I v||0 /Ω0) x  - 2(I /Ω0)2 C1  [v||0 
2+µB 0+R 2 ω2(Mi /Me )/(1+Ti / Te )]cosθ = 0. (14) 

 

The pitch angle parameter for electrons is 

 

κ= (8/27) (I v||0 /Ω0)3/{[(I /Ω0)2C1 ]
2[v||0

2+µB 0+R 2 ω2(Mi /Me )/(1+Ti / Te )]
2}, (15) 

 

and the fraction of the trapped potato electrons is of the order of 

 

  f t  ∼ (I vte C1
2 /Ω)1/3 (1+ R 2 ω2/ vti 

2)2/3.    (16) 

 

 

III Ion Transport Flux 

 
 To calculate the ion transport flux, we solve the steady state drift kinetic equation that is 

valid for large toroidal flow [10] 
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  (v||′n + vd +V)•∇f  + (dw /dt )∂f /∂w  = C (f ),    (17) 

 

where f is the particle distribution function, n = B /B, w  = v2/2, vd  is the drift velocity, and C (f ) 

is the Coulomb collision operator.  The independent variables for Eq.(17) are (w , µ, x).  With the 

assumption that ω′= 0, (dw /dt ) can be simplified to 

 

 (dw /dt ) = (v||′/B)[ -(e /M)B•∇Φ1 +(e /M)B•E (A) – (ω2/2) B•∇R 2] – 

 

   (e /M) vd•∇Φ1 + (e /M) vd• E (A) ,     (18) 

 

where E (A) is the inductive electric field. We change the independent variables from (w , µ, x) to 

(E, µ, x), Eq.(17) becomes 

 

(v||′n + vd +V)•∇f  + (v||′/B)(e /M)B•E (A) ∂f /∂E = C (f ).  (19) 

 

To obtain Eq.(19), we neglected vd• E (A) term for being small by a factor of (ρp /a) compared 

with B•E (A) term.  We will solve Eq.(19) for both ions and electrons to calculate transport 

fluxes. We solve ion heat flux here by neglecting B•E (A) term. 

 

 To calculate transport fluxes for orbits with small (i.e. orbit width ∆ψ << Lψ, typical 

radial scale length of the plasma profiles) but finite orbit width, we assume poloidal particle 

precession frequency is of the same order of the collision frequency and both frequencies are 

larger than the radial drift frequency. The leading order equation is 

 

   (v||′n + vd )•∇θ∂f 0 /∂θ = C (f 0).    (20) 
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The solution to Eq.(20) for ions is 

 

 f 0 = f M = [N /(π3/2 vti 
3)] exp[- (v 

2/ vti 
2)+ (R 2 ω2/ vti 

2) - e Φ1~ /Ti ], (21) 

 

where N = N (ψ). For electrons, the solution is 

 

 f 0 = f M = [N /(π3/2 vte 
3)] exp[- (v 

2/ vtie
2) + e Φ1~/Te ].   (22) 

 

Imposing quasi-neutrality condition on ion and electron density calculated from Eqs.(21), and 

(22) yields a potential variation in the flux surface shown in Eq.(5) [9]. 

 

 The next order liner drift kinetic equation is 

 

(v||′n + vd )•∇θ∂f 1 /∂θ + vd •∇ψ∂f 1 /∂ψ + vd •∇ψ∂f 0/∂ψ  = C (f 1),  (23) 

 

where f 1 is the perturbed particle distribution. Note that even though f 1 is of the order of 

(∆ψ/Lψ) f 0, ∂f 1 /∂ψ is comparable ∂f 0/∂ψ, thus vd •∇ψ∂f 1 /∂ψ is kept in Eq.(23). This term is 

necessary to describe orbits with finite radial width. The driving term ∂f 0/∂ψ is easily evaluated 

to obtain 

 

 ∂f 0/∂ψ = f M [ P ′/P + e 〈Φ1〉′ /Ti  + (ME /Ti   - e 〈Φ1〉/Ti   - 5/2)Ti  ′/ Ti  ], 

 

where P = NT is a function of ψ. Note Eq.(23) is the similar to the linear drift kinetic equation 

derived in Ref.[9] except  the vd •∇f 1  is neglected in Ref.[9] due to the assumption of the 

vanishing radial orbit width, and ω′ term in Ref.[9] is neglected here for ω′ = 0 assumption is 

made. 
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 We solve Eq.(23) using the method developed in Ref.[2]. We first decompose the 

solution into the following form 

 

 f 1  = g – (I v||
′
 /Ω + I R ω/Ω)f M (P ′/P + e 〈Φ1〉′/Ti  + yTi  ′/ Ti  ),  (24) 

 

where y  is a parameter to be determined by imposing ambipolarity condition. The second term 

on the right side of Eq.(24) describe a plasma gradient driven parallel flow. Substituting Eq.(24) 

into Eq.(23), we obtain 

 

 (v||′n + vd )•∇θ∂g /∂θ + vd •∇ψ∂g/∂ψ + vd •∇ψf M (x2 - 5/2 - y)Ti  ′/ Ti  ], 

  

 = C (g),      (25) 

 

where x2 = ME /Ti   - e 〈Φ1〉′/Ti . Note that the radial gradient of the plasma gradient driven 

parallel flow is neglected in obtaining Eq.(25). 

  

  It is obvious that both (v||′n + vd )•∇θ and vd •∇ψ can be expressed in terms of Pζ: 

 

 (v||′n + vd )•∇θ = ω|| n•∇θ = - (I /Ω)[(∂Pζ /∂ψ)//(∂Pζ /∂E)] n•∇θ,  (26) 

 

and  

 

   vd •∇ψ =  (I /Ω)[(∂Pζ /∂θ)//(∂Pζ /∂E)] n•∇θ.   (27) 

 

Following the procedure in Ref.[2], we can derive an approximated constant of motion in the 

region near the magnetic axis: 

 

   (4/3) (I ω||/Ω0) = ψ + (2/3) (I v||0 ′ /Ω0),   (28) 



 12

 

where  

 

ω|| = v|| ′ - {(I /Ω)([v||′
2+µB +R 2 ω2(Ti /Te )/(1+Ti / Te )] + (2v||′

 ω R 2 /Ω)}× 

 

   C1 ψ- 1/2cos θ /2.      (29) 

 

The collision operator can be approximated as 

 

   C (g) ≈ νD µB ∂2 g /∂ω||
2,    (30) 

 

where  νD is the deflection frequency [11].  It is convenient to use pitch angle variable κ in 

solving Eq. (25) using the collision operator given in Eq.(30). To this end, we use  

 

    d ω ≈ (4/3) (ω2 /2κ ω)d κ,    (31) 

when we solve Eq.(25) 

 

 From the results obtained in Eqs.(23-31), we see that the solution for Eq.(25) should be 

the same as that in Ref.[2] symbolically except the definitions of those symbols are different to 

take into account the effects of finite toroidal flow speed. Thus, we can easily conclude the flux 

surface and radially averaged ion particle flux in flux coordinates is 

 

 Γi = - 0.875 n- νi (I vti /Ωi)
7/3 C1

 2/3 (µ2i - y  µ1i ) T i ′/T i ,   (32) 

 

where n- is approximately the flux surface averaged ion density, νi is the ion- ion collision 

frequency. The coefficients µji are basically effective viscous coefficients with the modifications 

due to the centrifugal force drift and E ×B drift. They are 
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µ1i  = dx
0

∞∫  x 5/3 e –x (νD/νi)[1 +(2/x ) (R  ω/ vti )
 2 (Ti /Te )/(1+Ti / Te )]

2/3, 

 

≈ 0.531 [ 1 + 2.3 (R  ω/ vti )
 2 (Ti /Te )/(1+Ti / Te )],   (33) 

 

and 

.    

µ2i  = dx
0

∞∫  x 5/3 e –x (νD/νi)(x –5/2)[1 +(2/x ) (R  ω/ vti )
2 (Ti /Te )/(1+Ti / Te )]

2/3, 

 

≈ - 0.542 [ 1 + 4.325 (R  ω/ vti )
 2 (Ti /Te )/(1+Ti / Te )].  (34) 

 

We also display the approximate forms for µji  for (R  ω/vti )
2 < 1 in Eqs. (33-34). Since ion 

particle flux is much larger than that of electrons’, Γi ≈ 0 to maintain ambipolarity. This 

determines the parameter y : 

 

    y   = µ2i  / µ1i .     (35) 

 

Once y is determined, the next order ion parallel mass flow is determined: 

 

u||i = - (I vti  
2/2Ωi) (P ′/P + e 〈Φ1〉′/Ti  + yTi  ′/ Ti  ).       (36) 

 

The parallel flow u||i given in Eq.(36) is driven by the plasma gradients.  

 

The flux surface and radially averaged ion heat flux 〈q i•∇ψ〉 is 

 

 〈q i•∇ψ〉 = -  0.875 n- νi (I vti /Ωi)
7/3 C1

 2/3 [(µ3i µ1i - µ2i 
2 )/ µ1i ]T i ′,  (36) 

 

where 
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µ3i = dx
0

∞∫  x 5/3 e –x (νD/νi)(x –5/2)2[1 +(2/x ) (R  ω/ vti )
2(Ti /Te )/(1+Ti / Te )]

2/3, 

 

≈ - 1.282[ 1 + 4.01 (R 2 ω2/ vti 
2) (Ti /Te )/(1+Ti / Te )].   (37) 

 

Again, the approximate form for µ3i for (R ω/vti )
2 < 1 is also given in Eq.(37). It is obvious that 

the ion potato heat flux remains finite as ψ→ 0. Note that because 〈q i•∇ψ〉 is radially averaged, 

one should not take ∇ψ = R Bp out of the average to convert the result in Eq.(37) to a simplified 

cylindrical form. One probably could use radially averaged 〈∇ψ〉 = 〈R Bp〉 to convert results in 

Eq.(36) to cylindrical form. In that case, the heat flux also remains finite when r → 0 contrary to 

incorrect interpretation of the results displayed in Refs.[12-13]. Because T i ′ is constant, the heat 

flux given in Eq.(36) can be understood in terms of a random walk process in ψ as illustrated in 

Ref.[2]. We would also like to note the ion heat flux defined here has the same definition as the 

one given in Refs.[14]. The qualitative difference between our results and those in Ref.[13] could 

result from the mathematical algorithm used there.  

 

 For NSTX, the value of (R ω/ vti ) can be as high as 0.7. Thus, one expects an order of 

unity of enhancement in the ion potato heat flux due to the finite toroidal plasma flow speed. 

 

 The effects of the orbit squeezing can be included following the procedure illustrated 

here and that in Ref. [15]. The results are that both Γ i in Eq.(32),  and 〈q i•∇ψ〉 in Eq.(36) are 

reduced by a factor of |S | - 5/3 through the reduction of the viscous coefficients µs shown in Eqs. 

(33), (34), and (37), the same as the orbit squeezing reduction of the ion potato transport fluxes 

without the effects of the sonic toroidal rotation given in Ref.[15]. We also note that the banana 

ion heat flux with finite toroidal rotation speed obtained in Ref.[9] is also reduced by a factor of 

|S | - 3/2 when the effects of the orbit squeezing is included.  This is reduction factor is again the 

same as the banana ion heat flux without finite toroidal rotation speed shown in Ref.[16]. 
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IV Electron Transport Fluxes 

 

 Even though electrons are not affected by the centrifugal force, their orbits do have an 

addit ional E ×B drift due to the density variation in the flux surface. This additional drift 

modifies the transport fluxes. We are mainly interested in bootstrap current density, and the 

modification on the plasma electrical conductivity.  

 

 The linear drift kinetic equation for electrons is  

 

(v||n + vd )•∇θ∂f e /∂θ + vd •∇ψ∂f e /∂ψ + vd •∇ψ∂f 0/∂ψ +  

 

(v||/B)(e /M)B•E (A) )∂f 0 /∂E =  = C (f e),   (38) 

 

where f 0 for electrons is given in Eq.(22). Note for electrons, the plasma mass flow V  is 

negligible compared with electron speed. We solve Eq.(38) using the moment equation 

approach. The method we use is the one developed for the neoclassical quasilinear theory 

[17.18]. We expand the perturbed electron distribution function f e as 

 

   f e  = g + 2( v||u ||e / vte
2) f Me ,     (39) 

 

where u ||e is the electron parallel mass flow driven by the plasma gradients. We could also 

include electron parallel heat flow q ||e in the expansion as shown in Refs. [15]. However, 

because in a large aspect ratio tokamak, electron parallel heat flow can be ignored [11], we do 

not include q ||e in Eq.(39). The electron parallel mass flow u ||e is 

 

  u ||e = (I c /B ) (P ′/N e  - 〈Φ1〉′ ) + B K ,     (40) 
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where  K  = u •∇θ / B•∇θ is approximately a function of ψ (see Appendix), u is the electron 

mass flow velocity.  Substituting Eq.(39) into Eq.(38), we obtain 

 

  (v||′n + vd )•∇θ∂g /∂θ + vd •∇ψ∂g/∂ψ  - C (g) = 

 

  - vd •∇ψf Me (e e 〈B 2〉/I c T e) [ K + (2/5) (x2 - 5/2) H /P],   (41) 

 

where (2/5) H /P = (I c T e/ e e〈B 2〉)Te  ′/ Te .  If we had included parallel heat flow in Eq.(39),  

H = q •∇θ / B•∇θ, where q is the electron heat flow.  Note that Eq.(41) has the same form as the 

one in Ref.[3]. We follow the same procedure to obtain the solution and use the solution to 

calculate effective viscous forces.  The results are 

 

  〈B •∇• π  eff 〉 = n M e B 0
2 [µ1e K + µ2e (2/5) H /P ],   (42) 

 

and 

 

  〈B •∇• Θ eff 〉 = n M e B 0
2 [µ2e K + µ3e (2/5) H /P ],   (43) 

 

where the viscous coefficients are, for j=1-3,  

 

 µje = (1.12/ π )I p νe (I vte /|Ωe|)1/3 C1
 2/3 × 

 

dx
0

∞∫  x 5/3 e –x (νD/νe)∑j[1 + 2x  -1 (R  ω/ vti )
 2 (Ti /Te )/(1+Ti / Te )]

2/3, (44) 

 

I p = 2.77, νe is the electron collision frequency, and ∑1 = 1, ∑2 = x – 5/2, and ∑3 = (x – 5/2)2. 

We use the term effective viscosity to describe the combined terms except the friction forces in 

the flux surface and radially averaged parallel momentum balance equation and parallel heat 

momentum balance equation. Thus,  
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  〈B •∇• π  eff 〉 = - 〈neB •∇Φ1〉 + 〈B •∇• π  〉,    (45) 

 

and 

 

 〈B •∇• Θ eff 〉 = (5/2)〈neB •∇Φ1〉 - (5/2) (e /T )〈pB •∇Φ1 〉 - (e /T )〈B •∇Φ1•π  〉 

 

 + 〈B •∇• Θ 〉,      (46) 

 

where π  and Θ are Chew-Goldberger-Low viscous stress tensors [11]. Note that those terms that 

contain B •∇Φ1 are resulted from the E ×B drift due the potential variation on a flux surface. 

These are the terms that are partially responsible for the flow enhancement factor in Eq.(44). 

Using the parallel momentum balance equation and parallel heat momentum equation: 

 

    〈B •∇• π  eff 〉 = 〈B • F1〉,    (47) 

 

and  

 

    〈B •∇• Θ eff 〉 = 〈B • F2〉,    (48) 

 

where F j for j = 1 and 2 are electron friction force and electron heat friction force respectively 

[11].  Solving Eqs. (47), and (48), we obtain expressions of the bootstrap current density in the 

vicinity of the magnetic axis and the plasma electrical conductivity as given in Ref.[3] except the 

viscous coefficients modified by the E ×B drift and particle trapping given in Eq.(44). Note that 

the fact that potential variation in the magnetic flux surface can drive a bootstrap current density 

is originally noted in Ref.[17,18]. It is obvious, the bootstrap current density does not vanish as 

ψ→ 0 as shown in Refs.[3] and here, and it is enhanced by a factor of the order of unity for the 

magnitude of the toroidal flow speed observed in NSTX. 

 



 18

 We note that, as shown in Ref.[3], the  complete electron transport matrix is Onsager 

symmetric because the linear Coulomb collision operator is self-adjoint. 

 

 Electron transport fluxes are affected by the orbit squeezing effects only when the value 

of the squeezing factor S  is large enough to reduce the magnitude of the ion viscous force to that 

of the electrons.   

 

 

V Applications  

 

 It is straightforward to apply the results on the bootstrap current density for the 

equilibrium modeling. An example of such an application is demonstrated in Ref.[19] where it is 

shown that tokamaks are intrinsically steady state plasma confinement devices. Because the 

fraction of the trapped electron potatoes is increased, the bootstrap current density near the 

magnetic axis is enhanced by a factor of the order of (1+ R 2 ω2/ vti 
2)2/3. The approximate ratio 

of the potato bootstrap current density to that of the bananas at half minor radius is of the order 

of (I vte C1
2 /Ω)1/3 (1+ R 2 ω2/ vti 

2)2/3/(ε/2)1/2 assuming that plasma gradients are the same at 

these two radial positions. For NSTX parameters, this ratio is about 13 % with Te = 1keV, q = 1, 

B = 0.6T, and R 2 ω2/ vti 
2 = 0.5. 

 

It is not as obvious to apply the ion heat flux for the modeling of the ion temperature 

profile.  The reason is that because the ion heat flux we obtain here and elsewhere [2] is radially 

averaged, the ion heat flux does not vanish at the magnetic axis as in the conventional transport 

modeling.  To resolve this issue we note that the radial width of an ion potato orbit is finite. The 

radially integrated heat source or sink over a potato orbit width does not vanish. We can employ 

the radially integrated heat source or sink to determine a gradient dT /dψ by balancing it with the 

radially averaged potato ion heat flux obtained here and Ref.[2]. This value of dT /dψ can then 

be one of the boundary conditions for the ion energy transport equation to determine an ion 

temperature profile. 
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VI Conclusion Remarks 

    

 We have extended potato transport theory in the vicinity of the magnetic axis to the 

situation where toroidal mass flow is of the order of the sonic speed to provide a more realistic 

theory for use in the interpretation of NSTX data. The theory is of course also applicable for 

tokamaks. We find that transport fluxes such as the radial ion heat flux and electron bootstrap 

current density are modified by a factor of the order of the square of the toroidal Mach number. 

For the toroidal plasma flow speed observed in NSTX, the modification can be of the order of 

unity. The effects of orbit squeezing reduces ion potato transport fluxes by a factor of |S | - 5/3, 

which is the same as the orbit squeezing reduction factor without the effects of the sonic toroidal 

rotation 

 

The flow enhancement factor in the ion heat flux can be easily understood in terms of a 

random walk process in ψ.  The ion heat conductivity χ in ψ scales as f t (ν/f t 
2)(∆ψ)2, where ∆ψ 

is the typical potato orbit width.  Using results in Eqs.(10) and (12), we obtain χ ∼  (1+ R 2 ω2/ 

vti 
2)2/3, the same as the flow enhancement factor in all viscous coefficients µs. 

 

We also state the results of the effects of the orbit squeezing on the ion transport fluxes. 

As found in the cases without the finite toroidal rotation speed, the reduction factors are |S | - 5/3 

for the potato orbits in the near axis region, and |S | - 3/2 for the banana orbits in the core region.  

 

 We note that all transport fluxes remain finite as ψ→ 0 as expected. The constitutive 

relations in the parallel momentum balance and parallel heat momentum balance equation are 

also presented.  These results may facilitate the transport modeling in the vicinity of the magnetic 

axis. 
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Appendix A: Electron Flow Pattern 

 

 We derive the plasma flow pattern here using electrons as an example. The results are 

used in solving electron drift kinetic equation in Sec. IV. 

 

 The lowest flow velocity is V = R ωζ . This velocity satisfies ∇• (nV ) = 0. We do not 

need to consider it here. What we need to find out is the next order flow pattern driven by the 

plasma gradients. The electron momentum equation is 

 

   - n e ∇ 0Φ  + n e u ×B /c = ∇p ,     (A1) 

 

where n = N exp (e Φ/T )  is the local electron density, u is the flow velocity driven by the 

plasma gradients, and p = n T.  The velocity perpendicular to B  is  

 

 u⊥ = [ (c /B 2)〈Φ1〉′ + (c /B 2)Φ1~T ′/T ] B ×∇ψ - (c /N eB 2)P ′ B ×∇ψ.  (A2) 

 

Note that u⊥ has no radial component as expected even though potential has a poloidal angle 

dependence. This is because the potential variation is determined by the parallel component of 

Eq.(A1). The Φ1~ term in Eq.(A2) is a factor of ε less than the other terms and we will neglected 

it for our purposes.  

 

 Note that ∇•u ≠ 0 in contrast to standard neoclassical theory.  From ∇•nu = 0, we have 

 

   K (∂n /∂θ) + n (∂K /∂θ) = 0,     (A3) 

 

where K = (u •∇θ / B •∇θ ). Solving Eq.(A3), we find 

 

   K = F (ψ) exp (-e Φ1~/T ),     (A4) 
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where F (ψ) is a constant on a given flow surface.  In the standard neoclassical theory, K is a flux 

function. From Eq.(A4), we see that K  is not a flux function here. However, because the poloidal 

angle variation part of K is of the order of ε, we will neglect this variation for our purposes.  

 

 Even though we use electrons as an example here, the qualitative conclusions are also 

applicable for ions obviously. For ions we need to include inertia term in the momentum 

equation, and in the local density n. 
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Appendix B: Ion Parallel Force Balance 

 
 
 The effective parallel viscous forces for ions are: 

 
 〈B •∇• π  eff 〉 = 〈n M B • V •∇V〉+ 〈neB •∇Φ1〉 + 〈B •∇• π  〉,  (B1) 
 
and 
 
   
 〈B •∇• Θ eff 〉 = -(5/2)〈neB •∇Φ1〉 + (5/2) (e /T )〈pB •∇Φ1 〉 + (e /T )〈B •∇Φ1•π〉  

 

+ (3/2)(M /T )〈p B •  V •∇V 〉 - (5/2)〈n M B • V •∇V〉+ + 〈B •∇• Θ 〉. (B2)  

 

To obtain Eq.(B2), we neglect ∇• (V Q ) term in the ion energy flux balance equation to 

make moment equation approach compatible to the kinetic equation. The total energy flux Q 

here is defined in Ref.[11]. The viscous coefficients defined in Sec.VI can be applicable for ions 

if one uses appropriate ion quantities in the definitions and ion flow enhancement factor given in 

Sec. III 

 

 

 

 

 

 

 

 

 

 

 

 



 24

References 

 

[1] V. Ya Goloboro’ko, Ya. Kolesnichenko, and V. A. Yavorskij, Nucl. Fusion 23, 399 (1983). 

[2] K. C. Shaing, R. D. Hazeltine, and M. C. Zarnstoff, Phys. Plasmas 4, 771 (1997). 

[3] K. C. Shaing, and R. D. Hazeltine, Phys. Plasmas 4, 1375 (1997).  

[4] S. A. Sabbagh, S. M. Kaye, J. Menard, et al., Nucl. Fusion 41, 1601 (2001). 

[5] H. L. Berk and A. A. Galeev, Phys. Fluids 10, 441 (1967). 

[6] T. H. Stix, Plasma Phys. 14, 367 (1972). 

[7] T. E. Stringer, Plasma Phys. 16, 651 (1974).  

[8] Yu. V. Gott, and E. L. Yurchenko, Plasma Phys. Rep. 25, 363 (1999).  

[9] F. L. Hinton, and S. K. Wong, Phys. Fluids 28, 3082 (1985). 

[10] R. D. Hazeltine, and A. A. Ware, Plasma Phys. 20, 673 (1978). 

[11] S. P. Hirshman, and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981). 

[12] A. Bergmann, A. G. Peeters, and S. D. Piuches, Phys. Plasmas 8, 5192 (2001). 

[13] W. X. Wang, F. L. Hinton, and S. K. Wong, Phys. Rev. Lett., 87, 055002 (2001). 

[14] R. D. Hazeltine, and A. A. Ware, Phys. Fluids, 19, 1163 (1976). 

[15] K. C. Shaing, R. D. Hazeltine, and M. C. Zarnstorff, Phys. Plasmas 4, 1371 (1997). 

[16] K. C. Shaing, and R. D. Hazeltine, Phys. Fluids B 4, 2547 (1992). 

[17] K. C. Shaing, Phys. Fluids 31, 2249 (1988). 

[18] K. C. Shaing, Phys. Fluids 31, 8 (1988). 

[19] K. C. Shaing, A. Y. Aydemir, Y. R. Lin-Liu, and R. L. Miller, Phys. Rev. Lett. 79, 3652 

(1997). 

 

 

 

 

 

 

 

 



 25

Figure Captions  

 

Figure 1. The toroidal angular velocity ω versus normalized poloidal flux ψN ≡ψ⁄ψ0 for a 

particular NSTX discharge at two different times 0.49sec (a) and 0.51sec (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
Fig. 1a 
 
 
 

 
 
Fig. 1b 


	Untitled



