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Curvature-driven turbulence in a helical open-field-line plasma is investigated using electrostatic five-
dimensional gyrokinetic continuum simulations in an all-bad-curvature helical-slab geometry. Parameters
for a National Spherical Torus Experiment scrape-o↵-layer plasma are used in the model. The formation and
convective radial transport of plasma blobs is observed, and it is shown that the radial particle-transport
levels are several times higher than di↵usive Bohm-transport estimates. By reducing the strength of the
poloidal magnetic field, the profile of the heat flux to the divertor plate is observed to broaden.

I. INTRODUCTION

Satisfactory and reliable quantitative predictions of
turbulence and transport in the tokamak edge and
scrape-o↵-layer (SOL) regions are widely believed to re-
quire the use of expensive gyrokinetic simulations in some
capacity.1–4 Some major outstanding questions that re-
quire numerical investigation include how the SOL power
width is set,5–7 how a confined plasma transitions from
a low-confinement L mode to a high-confinement H
mode,8,9 and how high the H-mode pedestal tempera-
ture can get, since the pedestal temperature has a major
impact on the core temperature profile and the resulting
gain.10,11 Gyrokinetic simulations in the edge and SOL
regions are challenging for several reasons (e.g. large-
amplitude fluctuations, steep profile gradients, closed
and open magnetic field lines, X-point, e↵ective sheath-
model boundary conditions), but specialized particle-in-
cell12,13 and continuum gyrokinetic codes14–18 have been
making steady progress towards the ultimate goal as a
predictive tool for boundary-plasma modeling. We re-
fer the reader to Cohen and Xu 1 for a summary of
early approaches to gyrokinetic edge and SOL simula-
tion and Krommes 19 for an introduction to gyrokinet-
ics. The particle-in-cell-based XGC1 code20 is the only
gyrokinetic code at present that is able to simulate tur-
bulence in a three-dimensional diverted geometry. The
first gyrokinetic simulations using continuum algorithms
to simulate turbulence on straight open field lines were
presented in Shi et al. 14 and then in Pan et al.

16 . Here
and in Shi 15 , we extend this earlier work to present the
first gyrokinetic continuum simulations on open field lines
including curved toroidal fields, which can strongly en-
hance the drive of plasma instabilities.

The SOL refers to the tokamak plasma region of open
magnetic field lines between the last closed flux surface
(LCFS) and the first wall. Here, the field lines intersect
material surfaces that act as plasma sinks where the loss
rate of electrons and ions are kept in approximate par-
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ticle balance by a Debye sheath layer. Plasma–surface
interactions21 at the material interfaces can also contam-
inate the plasma with wall materials, which can severely
degrade the fusion-plasma quality, but we do not yet in-
corporate these e↵ects in the model being presented here.
Probe and imaging diagnostics have revealed the ex-

istence of intermittent coherent structures in the SOL
referred to as plasma filaments or blobs,22–26 which con-
vectively transport particles, heat, momentum, and cur-
rent across magnetic field lines.27 Blobs are character-
ized by densities that are much higher than local back-
ground levels, a structure that is highly elongated along
the magnetic field (much larger than the plasma minor
radius), and much smaller scales perpendicular to the
magnetic field, ⇠10⇢

i

, where ⇢
i

is the ion gyroradius.27,28

Cross-field transport in the far SOL is highly intermittent
due to blob propagation28 and is consequently poorly de-
scribed in terms of e↵ective di↵usion coe�cients and con-
vective velocities.29

In a tokamak, the curvature and rB forces are be-
lieved to set up a charge-separated dipole potential
structure across the blob cross-section that results in
its outward radial propagation via convective E ⇥ B
transport.27,30 Finite-temperature e↵ects of the blob can
also cause spin motion if the blob is sheath-connected,
which can reduce this radial motion.31 Numerically,
blobs dynamics have been studied using seeded-blob fluid
simulations.32–35 Self-consistent blob formation has been
studied with two-dimensional models36–38 and in three-
dimensional turbulence simulations.12,39–41

The work presented here builds on our previous ef-
forts in simulating open-magnetic-field-line turbulence in
the Large Plasma Device42 using the gyrokinetic con-
tinuum capabilities of the Gkeyll code.14 In that study,
the magnetic field was straight and uniform, and the
plasma was highly collisional, which necessitated the use
of an artificial electron-to-ion mass ratio (m

i

/m
e

= 400)
and reduced electron collision frequencies to make the
simulations tractable, given the explicit algorithm used
at present for the collision operator. Nevertheless, we
found that our numerical approach based on discontinu-
ous Galerkin methods and sheath-model boundary con-
ditions for an open-field-line region were stable and pro-
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duced qualitatively reasonable results, which led to the
first demonstration of open-field-line turbulence with a
gyrokinetic continuum code. The reduced electron mass
and collision-frequency restrictions have been relaxed for
the simulations presented in this paper, which now also
include a more sophisticated magnetic geometry.

We have added magnetic curvature and rB drifts to
the Gkeyll code and can simulate a helical magnetic ge-
ometry approximating that in simple magnetized tori
(SMT’s), such as TORPEX43 and Helimak.44 In con-
trast to early work on the simulation of turbulence in
SMT’s based on the drift-reduced Braginskii equations
and neglecting the ion temperature,45–47 the gyrokinetic
approach naturally can investigate plasmas with T

i

>⇠ T
e

,
which is commonly observed in the SOL.48–50 Recent
fluid simulations are also including finite T

i

.51,52

Although our simulations do not yet simultaneously
contain open- and closed-field-line regions,51–56 we be-
lieve that many basic properties of SOL turbulence and
transport are reproduced in this model. Additionally, the
turbulence in this helical open-field-line geometry with
parameters appropriate for a tokamak SOL has not been
previously studied using a gyrokinetic PIC approach, ei-
ther. We do acknowledge, however, that gyrokinetic PIC
codes that have the necessary capabilities for the problem
described in this paper have already been developed,12,13

and it should be straightforward for these codes to im-
plement this simple helical geometry for cross-code com-
parisons.

We discuss details of the helical-SOL model in Sec. II,
including equations solved, simulation geometry, and
boundary conditions. Additional details about the un-
derlying algorithms can be found in Refs. 14 and 15. We
present simulation results obtained using the Gkeyll code
in Sec. III, such as heat-flux profiles, fluctuation statis-
tics, and particle fluxes. Our conclusions are given in
Sec. IV. To facilitate future code comparisons, we also
present details of the initial conditions used in our simu-
lations in Appendix A.

II. MODEL

In the non-orthogonal field-aligned geometry used in
the simulation, z measures distances along field lines
relative to the midplane (poloidal angle ✓pol = 0 in a
tokamak), x is the radial coordinate, and y is constant
along a field line and measures distances perpendicular
to field lines. The simulation geometry is a flux tube on
the outboard side that wraps around the torus a speci-
fied number of times, terminating on material surfaces
at each end in z. The resulting mapping from field-
aligned coordinates (x, y, z) to standard cylindrical co-
ordinates (R,', Z) is given by R = x, Z = z sin ✓, and
' = (y sin ✓ + z cos ✓) /R

c

, where R
c

= R0 + a and the
field-line pitch sin ✓ = B

v

/B are taken to be constant,
R0 is the device major radius, a is the device minor ra-
dius, and B

v

is the vertical (or poloidal) magnetic field.

This simple helical geometry has vertical flux surfaces
(i.e., ignores flux expansion) and has no magnetic shear,
and some further approximations to di↵erential operators
are made assuming short-wavelength turbulence for now.
The final model nevertheless includes the main e↵ect of
the bad-curvature drive by toroidal magnetic fields while
using an e�cient field-aligned grid. See Refs. 57–59 and
15 for further details.
We solve a full-f gyrokinetic equation written in the

conservative form60–62

@J f
s

@t
+r·(J Ṙf

s

) +
@

@vk
(J v̇kfs) =JC[f

s

] + J S
s

,(1)

where f
s

= f
s

(R, vk, µ, t) is the gyrocenter distribu-
tion function for species s, J = B⇤

k is the Jacobian
of the gyrocenter coordinates, B⇤

k = b · B⇤, B⇤ =

B + (Bvk/⌦s

)r ⇥ b, C[f
s

] represents the e↵ects of col-
lisions, ⌦

s

= q
s

B/m
s

, and S
s

= S
s

(R, vk, µ, t) repre-
sents plasma sources. The characteristics are calculated
as Ṙ = {R, H} and v̇k = {vk, H}, where the gyrokinetic
Poisson bracket operator is

{F,G} =
B⇤

m
s

B⇤
k
·
✓
rF

@G

@vk
� @F

@vk
rG

◆
� 1

q
s

B⇤
k
b·rF⇥rG,

(2)
and the gyrocenter Hamiltonian is H

s

= 1
2ms

v2k + µB +
q
s

�, where the long-wavelength limit has been taken to
neglect gyroaveraging. A conservative Lenard–Bernstein
collision operator63 that neglects the velocity dependence
of the collision frequency is used to model self-species and
electron–ion collisions.
This system is closed by the long-wavelength gyroki-

netic Poisson equation with a linearized ion polarization
density

�r? ·
✓
ng

i0q
2
i

⇢2s0
T
e0

r?�

◆
= �

g

= q
i

ng

i

(R)� en
e

(R), (3)

where ⇢s0 = cs0/⌦i

, cs0 =
p
T
e0/mi

, and ng

i0 is the back-
ground ion gyrocenter density that we take to be a con-
stant in space and in time.
In these equations, we neglect geometrical factors aris-

ing from a cylindrical coordinate system everywhere ex-
cept in B⇤ = B + (Bvk/⌦s

)r ⇥ b, where we make
the approximation that perpendicular gradients are much
stronger than parallel gradients:

(r⇥ b) ·rf(x, y, z) = [(r⇥ b) ·ry] @f(x,y,z)
@y

+ [(r⇥ b) ·rz] @f(x,y,z)
@z

⇡ [(r⇥ b) · ey] @f(x,y,z)
@y

. (4)

Here, we assume that (r ⇥ b) · ey = �1/x, where
ey = ry is a ‘co-basis’ direction. This type of approxi-
mation has also been employed in some fluid simulations
of SMT’s.46,64 We assume that B = Baxis(R0/x)ez.
Periodic boundary conditions are applied to both f

and � in y, and the Dirichlet boundary condition � = 0
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is applied in x, which prevents gyrocenters from crossing
the surfaces in x. Conducting-sheath boundary condi-
tions are applied to f in z, which partially reflect gy-
rocenters of one species and fully absorb gyrocenters of
the other species into the wall depending on the sign
of the sheath potential. The potential is determined by
solving the gyrokinetic Poisson equation [Eq. (3)]. Eval-
uating this potential at the sheath entrances (the ends
of the simulation domain in z) gives the sheath poten-
tial, which is used to determine which particles are re-
flected by the sheath. This is the gyrokinetic analog
of how fluid codes have used the vorticity to calculate
the potential and sheath e↵ects (for example, see Ricci
and Rogers 46). We refer to these boundary conditions
as conducting-sheath boundary conditions14,15 because
they allow self-consistent currents locally in and out of
the end plates. This is in contrast to the logical-sheath
boundary-condition model,65–67 which assumes an insu-
lating sheath with zero current density at the end plates
everywhere. There is no closed-field-line region in our
present model.

We use parameters roughly approximating a singly ion-
ized H-mode deuterium plasma in the NSTX SOL:68,69

ng

i0 = 7 ⇥ 1018 cm�3, T
e

⇠ 40 eV, T
i

⇠ 60 eV,
Baxis = 0.5 T, R0 = 0.85 m, a0 = 0.5 m. Although
we use parameters for an H-mode plasma, we do not at-
tempt or claim to capture H-mode physics (e.g. an edge
transport barrier) in our simulations, since they include
only the SOL and not the pedestal.

The simulation box has dimensions L
x

= 50⇢s0 ⇡
14.6 cm, L

y

= 100⇢s0 ⇡ 29.1 cm, L
z

= L
p

/ sin ✓, where
L
p

= 2.4 m, ⇢s0 = cs0/⌦i

, and ✓ is the magnetic-
field-line incidence angle. The magnetic field is taken
to be comprised primarily of a toroidal component with
a smaller vertical component (referred to as B

v

), re-
sulting in a helical-field-line geometry that roughly ap-
proximates the tokamak SOL. We present results with
sin ✓ = B

v

/B
z

= (0.2, 0.3, 0.6) in Sec. III, which corre-
spond to L

z

= (12, 8, 4) m. The connection length to the
divertor plate in the real NSTX experiment is typically
quite long, over 10 m, but we consider smaller values
that might represent the shorter connection length from
the midplane to the X-point region, where the magnetic
shear is very strong. In this study, the magnetic-field-
line incidence angle is not accounted for in the sheath
boundary conditions (i.e. no Chodura sheath70).

We use an energy-conserving discontinuous Galerkin
method for the spatial discretization of the equations,
which is a generalization of the algorithm of Liu &
Shu71 for two-dimensional incompressible flow in the
vorticity–stream function formulation. Time discretiza-
tion is performed using an explicit third-order strong-
stability-preserving Runge–Kutta algorithm.72 The pos-
itivity of the distribution function is not automatically
guaranteed in our algorithms, and our method to keep
f > 0 results in the addition of a small amount of nu-
merical heating ⇠10% of the source power to the system.
The details of the numerical algorithms, energy conser-

vation, and sheath boundary conditions are discussed in
Refs. 14 and 15.
The position-space extents are x 2 [R0 + a0 �

L
x

/2, R0 + a0 + L
x

/2], y 2 [�L
y

/2, L
y

/2], z 2
[�L

z

/2, L
z

/2], and the velocity-space extents are vks 2
[�vks,max, vks,max], where vks,max = 4v

ts

= 4
p
T
s

/m
s

and µ
s,max = (3/4)m

s

v2ks,max/(2B0), where B0 =

BaxisR0/(R0 + a0). The solution in each cell is ex-
panded using piecewise-linear basis functions, i.e. the
span of monomials in the five phase-space variables with
each variable degree  1. This choice results in 32
degrees-of-freedom per element to represent the distri-
bution function and Hamiltonian. The grid resolution is
(N

x

, N
y

, N
z

, N
vk , Nµ

) = (18, 36, 10, 10, 5), and a uniform
grid spacing is used.

The plasma density source has the following form:

S(x, z) =

(
S0max

h
exp

⇣
�(x�xS)2

2�2

S

⌘
, 0.1

i
, |z| < L

z

/4

0 else,
(5)

where x
S

= �0.05 m+R0+a0, �S

= 5⇥10�3 m, and S0

is chosen so that the source has total (electron plus ion)
power Psource = 0.27L

z

/L
z0 MW, where L

z0 = 4 m. The
expression for the source power comes from multiplying
PSOL = 5.4 MW, the total power into the SOL, by the
fraction of the total device volume covered by the sim-
ulation box. A floor of 0.1S0 is used in the |z| < L

z

/4
region to prevent regions of n ⌧ n0 from developing at
large x, which can result in distribution-function posi-
tivity issues. The distribution function of the sources
are non-drifting Maxwellians with a temperature profile
T
e,i

= 74 eV for x < x
S

+ 3�
S

and T
e,i

= 33 eV for
x � x

S

+ 3�
S

. These choices result in an integrated
source particle rate of ⇡9.6⇥ 1021 s�1 for the L

z

= L
z0

(B
v

/B
z

= 0.6) case.
We do not yet include a closed-field-line region in our

simulations, so we only simulate a SOL. The x < x
S

+3�
S

region will be referred to as the source region in this
paper, while the x � x

S

+ 3�
S

region will be referred to
as the SOL region. We can think of the x = x

S

+ 3�
S

location as the LCFS.

III. SIMULATION RESULTS

Starting from an initial condition estimated by the
steady-state solution of one-dimensional fluid equations
(see Appendix A), the sources steepen the plasma pro-
files, quickly triggering curvature-driven modes that grow
on a timescale comparable to � ⇠ c

s

/
p
R�

p

. We empha-
size that our system does not contain ballooning modes
since there are no ‘good-curvature’ regions. As shown
in Fig. 1, radially elongated structures extending far
from the source region are generated and subsequently
broken up by sheared flows in the y direction in the
source region, leaving radially propagating blobs in the
SOL region. Using the time-averaged profiles from the
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FIG. 1. Snapshots of the electron density (in 1018 m�3) at
various times (t = 17 µs, 21 µs, and 27 µs) near the beginning
of a simulation in the perpendicular x–y plane at z = 0 m.
This simulation has Bv/Bz = 0.3. The dashed line indicates
the boundary between the source and SOL regions. Note
that each plot uses a di↵erent color scale to better show the
features.

same B
v

/B
z

= 0.3 (L
z

= 8 m) simulation, we estimate
� ⇠ 1.9 ⇥ 105 s�1 using �

p

⇡ 2.9 cm, T
e

⇡ 30 eV, and
R = x

S

= 1.3 m. On a time scale long compared to
��1 and ⌧

i

= (L
z

/2)/v
ti

⇠ 50 µs, the conducting-sheath
boundary conditions maintain a quasi-steady state in
which the particle losses to the end plates are balanced
by the plasma sources. Snapshots of the electron density,
electron temperature, and electrostatic potential from
the quasi-steady state (t = 625 µs) for the B

v

/B
z

= 0.3
case are shown in Fig. 2.

For the steepest magnetic-field-line-pitch case
(B

v

/B
z

= 0.6), we performed a second simulation
with magnetic-curvature e↵ects removed, keeping all
other parameters unchanged. The resulting magnetic
geometry consists only of straight magnetic field lines,
so coherent structures of elevated plasma density cannot
become polarized by curvature forces. As shown in
the electron-density snapshot comparison in Fig. 3,
the presence of magnetic curvature appears to have an
important role in the turbulent dynamics of the system.
When magnetic-curvature e↵ects are removed, the radial
propagation of coherent structures into the SOL region
appears to be significantly weakened or absent, and
most of the density is localized to the source region.

Figure 4 compares radial profiles of the background
electron densities, normalized electron-density fluctua-
tion levels, and radial E⇥B particle fluxes �

n,r

between
these two simulations. The radial particle flux due to
electrostatic turbulence is calculated as �

n,r

= hñ
e

ṽ
r

i,28
where v

r

= E
y

/B and the brackets h. . .i indicate an aver-
age over a period that is long compared to the fluctuation
time scale and an average over y and the central region
in z, -0.5 m< z < 0.5 m. The fluctuation of a time-

1.3 1.35 1.4
x (m)

-0.1

-0.05

0

0.05

0.1

y
(m

)

6 8 10 12 14 16

1.3 1.35 1.4
x (m)

20 25 30

1.3 1.35 1.4
x (m)

40 60 80 100 120

ne Te φ

FIG. 2. Snapshots of the electron density (in 1018 m�3), elec-
tron temperature (in eV), and electrostatic potential (in V) in
the plane perpendicular to the magnetic field at z = 0 m. This
plot is made at t = 625 µs, which is after several ion transit
times (⌧i ⇠ 50 µs). This simulation has Bv/Bz = 0.3. The
dashed line indicates the boundary between the source and
SOL regions. A mushroom structure in the electron density
is observed at large x.

varying quantity A is denoted as Ã, which is related to
the total A as Ã = A � hAi

t

. Here, the brackets h. . .i
t

indicate an average in time. Notable di↵erences between
these two simulations are found in all three quantities
plotted. Compared to the helical-SOL simulation, the
straight-field-line simulation has a background density
profile that decays more rapidly, fluctuation levels that
quickly drop to ⇡0% outside x ⇡ 1.35 m, and a ⇡2.5
times smaller �

n,r

that also drops to approximately zero
outside x ⇡ 1.34 m.

We have also performed a scan of the mass ratiom
i

/m
e

from the actual ratio of 3698 down to 100 (by increasing
the electron mass), and we observed no significant quan-
titative or qualitative changes in the turbulence. The
mass ratio might play an important role in a di↵erent
parameter regime, however.

E↵ects connected to B
v

⇠ B
p

⇠ Iplasma are ex-
plored by changing the magnetic-field-line incidence an-
gle, since sin ✓ = B

v

/B
z

. We have performed simulations
at three values of magnetic-field-line pitches B

v

/B
z

=
(0.2, 0.3, 0.6), which correspond to L

z

= (12, 8, 4) m and
✓ = (20.14�, 30.47�, 64.4�). We scale the source appro-
priately in each simulation to keep the volumetric source
rate the same. In all these simulations, the source is
localized to the z 2 [�L

z

/4, L
z

/4] region to model a
source with a fixed poloidal extent. As ✓ is decreased,
the plasma profiles are observed to become less peaked,
implying that turbulence transport in the x-direction in-
creased with decreasing ✓.

We calculate the steady-state parallel heat flux q =P
s

R
d3v H

s

vkfs at the sheath entrance and average q



5

1.3 1.35 1.4

x (m)
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y
(m

)
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1.3 1.35 1.4

x (m)

5 10 15

Helical Straight

FIG. 3. Comparison of an electron density snapshot (in
1018 m�3) between a simulation in a helical-magnetic-field-
line geometry and a simulation in a straight-magnetic-field-
line geometry with B = B

0

. The formation of blobs in the
helical-SOL simulation results in the transport of density to
large x and a broad density profile. Coherent structures of
elevated plasma density do not appear to convect to large
x in the straight-magnetic-field-line case, and so density is
mostly localized to the source region. The plots are made in
the perpendicular x–y plane at z = 0 m and t = 681 µs. The
dashed line indicates the boundary between the source and
SOL regions. Note that each plot uses a di↵erent color scale
to better show the features.

in the y-direction to obtain a radial profile of the steady-
state parallel heat flux for each case. To compare the heat
fluxes on an equal footing, we plot the component of the
parallel heat flux normal to the divertor plate q? = q sin ✓
in Fig. 5. Compared to the B

v

/B
z

= 0.6 case, the heat-
flux profiles for the cases with a shallower pitch are much
broader. This behavior is consistent with the observation
in tokamaks that the SOL heat-flux width is inversely
proportional to the poloidal magnetic field (analagous to
B

v

in this model) and the plasma current,5,73 although
the physical reasons behind the scaling in our model and
in a tokamak SOL may be quite di↵erent. We note that
a significant amount of plasma in the smallest ✓ case gets
near the outer radial wall, where further radial transport
is suppressed, since the outer boundary is taken to be
an ideal conducting plate with constant �, so the E⇥B
velocity into the side walls, / @�/@y, vanishes. Simu-
lations with a larger domain extent in the x coordinate
(and/or finite-Larmor-radius e↵ects in the collision oper-
ator to include classical transport to the side wall) might
exhibit more of an exponential fall o↵ over a wider radial
range, further reducing the density in the right-hand side

of the simulation.
The broad heat-flux profiles in Fig. 5 can be connected

to the increased outward radial turbulent transport as
B

v

/B
z

becomes shallower. We compute the steady state
radial particle flux �

n,r

near the midplane in the region
-0.5 m< z < 0.5 m for each value of B

v

/B
z

and plot the
y-averaged fluxes in Fig. 6 (solid lines). Since the sim-
ulation box occupies a larger fraction the device volume
as B

v

/B
z

is decreased, but the source occupies the same
fraction of the simulation box and has a fixed volumet-
ric source rate, the background density levels increase as
B

v

/B
z

decreases. Another way to say this is that with
a fixed volumetric source density (fixed in particles per
cubic meter per second), the mean density is expected to
increase as the parallel connection length L

z

/2 increases
and the parallel loss rate ⇠1/⌧

i

= 2v
ti

/L
z

decreases.
Therefore, the magnitude of the �

n,r

profiles in Fig. 6
should not be taken alone as a measure of turbulence
levels.
The �

n,r

profiles can be compared with the radial
particle fluxes that result from assuming Bohm di↵u-
sion, i.e. �

B

= D
B

@
x

n
e

, where the di↵usion coe�-
cient D

B

= (1/16)k
B

T
e

/(eB). In the x > 1.36 m re-
gion, �

n,r

/�
B

⇡ 16 for the B
v

/B
z

= 0.2 case, while
�
n,r

/�
B

⇡ 8 for the B
v

/B
z

= 0.6 case. One might
expect the maximum level of turbulent transport to be
comparable to the levels set by D

B

, but it is important
to remember that D

B

is a di↵usive transport estimate.
The convective transport of blobs in these simulations
appears to be responsible for the much-higher turbulent
fluxes. Experimental data from tokamaks also suggest
that the higher-than-Bohm particle transport in the SOL
is due to the non-di↵usive transport of blobs.28,74

Density fluctuation statistics are often of interest in
the SOL to characterize the turbulence. Considering
again a time-varying quantity A, we define the skew-
ness of A as E[Ã3]/�3 and the excess kurtosis of A as
E[Ã4]/�4�3, where � is the standard deviation of A and
E[. . .] denotes the expected value. Figure 7 shows the
radial profiles of the normalized fluctuation level, skew-
ness, and excess kurtosis for electron-density fluctuations
and electrostatic-potential fluctuations computed near
the z = 0 m plane. The density and potential fluctuations
are normalized to their local background values. The pos-
itive skewness and excess kurtosis values are signatures of
intermittency, which indicates an enhancement of large-
amplitude positive-density-fluctuation events and is con-
nected to the transport of blobs.28,75

A somewhat counter-intuitive result is the reduction
of density fluctuation levels as B

v

/B
z

is decreased, given
that Figs. 5 and 6 indicate that turbulent spreading is in-
creased as B

v

/B
z

is decreased. The skewness and excess
kurtosis plots in Fig. 7 indicate that the density fluctua-
tions become closer to a normal distribution as B

v

/B
z

is
decreased. These trends in the density fluctuation statis-
tics can be understood by noting that the background
density profile becomes less peaked and more uniform in
the x-direction as B

v

/B
z

is decreased, so a blob that is
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FIG. 4. Radial profiles of the background electron densities (in 1019 m�3), normalized electron-density fluctuation levels,
and radial E ⇥ B particle fluxes �n,r (in 1021 m�2 s�1) for a helical SOL simulation and a straight-field-line simulation with
B = B

axis

. These plots are computed using data near the midplane in the region -0.5 m< z < 0.5 m and sampled at 0.25 µs
intervals over a ⇠400 µs period. The shaded area indicates the region in which the source is concentrated. The background
density profile in the straight-field-line simulation does not decay to 0 at large x due to the presence of a constant low-amplitude
source in that region to help mitigate positivity issues with the distribution function.
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FIG. 5. Comparison of the steady-state parallel heat flux
normal to the divertor plate for three cases with di↵erent
magnetic-field-line pitches. The shaded area indicates the re-
gion in which the source is concentrated. The heat-flux profile
is observed to broaden as Bv/Bz is decreased. Since a large
amount of plasma gets near the outer radial boundary, where
further radial transport is suppressed by the � = 0 constant
ideal-conducting-wall condition, the profiles in the shallower-
pitch cases may exhibit more of a uniform exponential fall o↵
by increasing the box size in the radial direction.

formed in the source region propagating in the SOL has
a density that is closer to the background level, which
results in lower relative fluctuation, skewness, and excess
kurtosis values when compared to the large B

v

/B
z

case.
Additionally, the density flux is constrained by the use of
a fixed volumetric source rate, so as the background den-
sity increases with decreasing B

v

/B
z

, the relative density
fluctuation levels tend to decrease. We also observe that
the potential fluctuations are much less intermittent than
the density fluctuations at the same B

v

/B
z

. This obser-
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FIG. 6. Comparison of the radial E ⇥ B particle flux
evaluated near the midplane for three cases with di↵erent
magnetic-field-line pitches. The shaded area indicates the re-
gion in which the source is concentrated. The dashed lines
are Bohm-flux estimates for comparison.

vation could be a real, physical e↵ect, but we note that
the fact that the temperature at large x runs into the
grid resolution (the lowest temperature that can be rep-
resented on the velocity grid) could be influencing the
potential fluctuation statistics in this region. Unlike the
density fluctuations, the normalized potential fluctuation
levels tend to increase with decreasing B

v

/B
z

.

Figure 8 shows radial profiles of the steady-state ion
and electron temperatures and ion-to-electron tempera-
ture ratios near the midplane for di↵erent B

v

/B
z

. For all
three simulations, T

i

/T
e

falls in the range 1.5–2, which
is within the range of 1–10 that is observed a few cen-
timeters outside the LCFS in tokamaks.49 Similar to the
heat-flux profiles shown in Fig. 5, the profiles are steepest
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FIG. 7. Comparison of the electron-density fluctuation statistics (top row) and electrostatic-potential fluctuation statistics
(bottom row) computed near the z = 0 m plane for three cases with di↵erent magnetic-field-line pitches. The potential
fluctuations are notably less intermittent than the density fluctuations. The shaded area indicates the region in which the
source is concentrated.

for the case with B
v

/B
z

= 0.6 and decay more gradually
in the lower B

v

/B
z

cases. SOL measurements typically
show that the ratio T

i

/T
e

increases with radius.49 We
see this trend in Fig. 8 for B

v

/B
z

= 0.3 and 0.2, but not
for B

v

/B
z

= 0.6. This reversed trend for B
v

/B
z

= 0.6 is
likely connected to the relatively flat T

e

at large x. In the
B

v

/B
z

= 0.6 case, the low-amplitude source of ⇠33 eV
electrons at large x [see the form of the plasma source,
Eq. (5)] could be setting T

e

in this region.

The flat T
e

at large x could also be an artifact from
the electrons running into a floor in the temperature
at large x. However, we note that the minimum elec-
tron temperature allowed on our present grid is T

e,min =
(2/3)T?e,min + (1/3)Tke,min = 11 eV based on T?e,min =
16 eV and Tke,min = 1.1 eV, which is somewhat lower
than the T

e

seen in this region. We can test this in fu-
ture work by running higher-resolution runs, including a
variable µ grid to better resolve low energies or by us-
ing exponential reconstructions, which is currently being
added to the code.

The normalized root-mean-square (r.m.s.) electron-
density fluctuation level in the x–z plane is shown in
Fig. 9. For all three values of B

v

/B
z

, the density
fluctuation levels are the largest in the source region
|z| < L

z

/4. The normalized density fluctuation levels in
the B

v

/B
z

= 0.6 case are fairly uniform along the field

lines, while they tend to fall o↵ by about a factor of 2–3
towards the sheaths in the smaller B

v

/B
z

cases. This
e↵ect could be a result of the stronger influence of the
sheath on the potential as the distance from the source
to the sheath is decreased. The instantaneous snapshots
of ñ

e

(not shown) indicate a strong kk = 0 component for
the largest B

v

/B
z

cases, while more parallel structure is
apparent in the smaller B

v

/B
z

cases.
The fluctuation statistics can also give information

about the strength of the electron adiabatic response
for each simulation. By assuming that the electrons are
isothermal along field lines, parallel force balance satisfies

�n
e

eEk �rkPe

= 0 (6)

�n
e

eEk = T
e

rkne

(7)

erk�

T
e

= rk lnne

(8)

e�mid

T
e

=
e�

sh

T
e

+ ln

✓
nmid

n
sh

◆
, (9)

where �
sh

and n
sh

are the electrostatic potential and
electron density evaluated at the sheath entrances and
�mid and nmid are the same quantities, but evaluated at
the midplane (z = 0 m). To compute the cross-coherence
diagnostic,53,77,78 ordered pairs (e�mid/Te

, e�
sh

/T
e

+
ln (nmid/nsh

)) falling in the region 1.318 m  x 
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FIG. 8. Radial profiles of the steady-state ion and electron temperatures near the midplane and ion-to-electron temperature
ratios for cases with di↵erent magnetic-field-line pitches. Although both electrons and ions are sourced at the same temperature,
the sheath allows high-energy electrons to be rapidly lost from the system, resulting in lower electron temperatures in the SOL
if collisions are not rapid enough to equilibrate the two species.49,76
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FIG. 9. Comparison of the parallel structure of the normal-
ized r.m.s. electron-density fluctuation amplitude for three
cases with di↵erent magnetic-field-line pitches. While the
density fluctuations are primarily kk = 0 in the Bv/Bz = 0.6
case, more parallel structure is observed in the lower Bv/Bz

cases. The region in which the source is concentrated is indi-
cated by the dashed black lines.

1.326 m (approximately where the maximum density and
potential fluctuations are) are sampled at 1 µs inter-
vals over a ⇠1 ms period for each simulation. Fig-
ure 10 shows the resulting plots (normalized bivariate
histograms), which all indicate a strong correlation be-
tween the two sides of Eq. (9), and so the electrons
are strongly adiabatic, meaning that the electron dis-
tribution function along a field line closely follows a
Boltzmann distribution.79 This finding indicates that it
might be possible to obtain similar results using a two-
dimensional turbulence model (with reduced parallel dy-
namics and sheath-model boundary conditions) for the
parameters considered here. To quantify the degree of

non-adiabaticity, we define the parameter

✏2na =
E
⇣�

�̄mid � �̄ad

�2⌘

E
⇣⇥

�̄mid � E
�
�̄mid

�⇤2⌘ , (10)

where �̄mid is the left-hand side of Eq. (9) and �̄ad is
the right-hand side of Eq. (9). The ✏na parameter mea-
sures of the fraction of fluctuations in � that are due
to non-adiabatic e↵ects. We find that ✏na is 0.094 for
B

v

/B
z

= 0.6, 0.226 for B
v

/B
z

= 0.3, and 0.310 for
B

v

/B
z

= 0.2, which is consistent with our expectation
that the electrons become less adiabatic as B

v

/B
z

is de-
creased.
Figure 11(a) shows the radial profile of the autocorre-

lation time ⌧
ac

(computed from time traces of the density
fluctuations). In the SOL of the simulation, ⌧

ac

tends to
increase with radius, which is a trend observed in to mea-
surements on NSTX (see Fig. 12 of Zweben et al.

68). The
autocorrelation time for the B

v

/B
z

= 0.2 and B
v

/B
z

=
0.3 cases is found to vary between ⇠5 µs and ⇠9 µs,
while the autocorrelation time for the B

v

/B
z

= 0.6 case
exhibits a larger variation in the SOL, with ⌧

ac

⇡ 4 µs for
x < 1.34 m and increasing to ⇡12 µs at the outer radial
boundary. The autocorrelation times we observe in our
simulations are lower than the ⌧

ac

⇠ 10–40 µs reported
by Zweben et al.

68 for the NSTX edge and SOL, but are
well within the ⌧

ac

⇠ 2–20 µs range that is typical for
edge and SOL turbulence in other tokamaks.28,48

Figure 11(b) shows the poloidal and radial correlation
lengths (Lpol and Lrad respectively) using the electron-
density fluctuations near the z = 0 m plane. The correla-
tion length at a radial location is obtained by averaging
the correlation length computed at several points in y.
At an individual point, the correlation length is deter-
mined from the correlation function, which is constructed
by computing the equal-time two-point autocorrelation
function for density fluctuations separated by some dis-
tance �y for Lpol or �x for Lrad. Having observed a
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FIG. 10. Comparison of the cross-coherence between the midplane potential e�
mid

/Te and e�sh/Te+ln (n
mid

/nsh) [see Eqs. (6)–
(9)] for three cases with di↵erent magnetic-field-line pitches ✓. Here, �sh is the sheath potential, n

mid

is the midplane electron
density, and nsh is the sheath electron density. These plots are created by binning ordered pairs of the two quantities sampled
every 0.25 µs over a ⇠1 ms time interval at solution nodes falling in the region 1.318 m  x  1.326 m. In all three cases, the
two quantities are highly correlated, which indicates that the electrons are strongly adiabatic (near parallel force balance).

significant wave feature in the poloidal correlation func-
tion, we determined Lpol by fitting the poloidal corre-
lation function to e�|�y|/L

pol cos(kwave�y). The radial
correlation function, which does not have a wave fea-
ture, is computed using the full width at half maximum
(FWHM) as Lrad = FWHM/(2 ln 2).

For all three values of B
v

/B
z

, we observe that the ratio
Lpol/Lrad is between 1.2 and 1.6 for most of the radial
domain, which is similar to the Lpol/Lrad ⇠ 1–2 that
is typically observed in tokamaks and stellarators.28,48

An average Lpol/Lrad = 1.5 ± 0.1 was reported for rep-
resentative Ohmic NSTX discharges,69 although larger
ratios Lpol/Lrad ⇠ 3–4 have been observed in some
experiments80 and simulations.12

There are two kinds of sheath-model boundary con-
ditions that are commonly used in fluid and gyroki-
netic codes. Logical-sheath boundary conditions enforce
jk = 0 at the sheath entrances, while current fluctua-
tions into the sheath are permitted in conducting-sheath
boundary conditions. Figure 12 shows the radial profiles
of the steady-state parallel current into the sheath for the
three cases under consideration. The currents have been
normalized to peak steady-state ion saturation current
jsat = q

i

n
i

cs, where cs =
p

(T
e

+ �T
i

)/m
i

and � = 3 is
used because the collisionless layer in front of the sheaths
should be resolved in all three cases. All three cases are
quite quantitatively similar, and the outward sheath cur-
rents are found to be highly symmetric in z, which is
consistent with the strong adiabatic response shown in
Fig. 10. A large excess electron outflow (negative cur-
rent) is seen in the hot source region (near x = 1.3 m),
which is compensated by a large excess ion outflow (pos-
itive current) just outside the source region. The peak

values are approximately 20% of the ion saturation cur-
rent, which motivates future studies regarding how the
use of various sheath-model boundary conditions a↵ect
turbulence in these simulations.

IV. CONCLUSIONS

We have developed a model to investigate curvature-
driven SOL turbulence in a simplified helical-magnetic-
field geometry and performed numerical simulations of
the system using an electrostatic gyrokinetic continuum
code. The blobs in our simulations appear to origi-
nate as radially elongated structures that extend from
the source region into the SOL and get broken up by
sheared poloidal flows. The blobs appear to e�ciently
transport plasma across the magnetic field, leading to ra-
dial particle fluxes that are much higher than Bohm-flux
estimates. Such large-amplitude and large-scale blobs
were not observed in a set of simulations we performed
without magnetic-curvature e↵ects. We note, however,
that coherent structures with high plasma density have
been observed in linear devices with negligible magnetic
curvature.81,82 The mechanism that polarizes such co-
herent structures in linear devices and leads to outward
radial propagation could be due to neutral wind.83

We characterized the turbulence using a variety of di-
agnostics and found that various quantities of interest are
within the range expected for SOL turbulence in toka-
maks, such as fluctuation levels, autocorrelation times,
and correlation lengths. A summary of some quantities
observed in our simulations is given in Table I, which also
includes experimental values from the NSTX SOL.24,68
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FIG. 11. Radial profiles of the (a) autocorrelation time and (b) poloidal (dashed lines) and radial (solid lines) correlation
lengths computed at the z = 0 m plane for three cases with di↵erent magnetic-field-line pitches. The shaded area indicates the
region in which the source is concentrated. L

pol

/L

rad

⇠ 1.2–1.6 is observed across the radial domain.

FIG. 12. Radial profiles of the steady-state parallel currents
into the sheaths for cases with di↵erent magnetic-field-line
pitches. The current is normalized to the peak value of the
steady-state ion saturation current j

sat

= qinics for each sim-
ulation. All three cases are quite quantitatively similar, fea-
turing a large excess electron outflow in the source region that
is balanced by a large excess ion outflow just outside of the
source region.

We know that there are a number of important physical
e↵ects (e.g. complete magnetic geometry, magnetic fluc-
tuations, and atomic physics) that need to be added to
the simulations in order to expect quantitative accuracy
for detailed comparisons with experiments, but it is in-
teresting to see that the present simulations are already
in the right ballpark qualitatively. This and other recent
work indicate the general feasibility of using continuum
codes to simulate gyrokinetic turbulence in the edge and
SOL regions of tokamaks.

Even in this simple limit we began to explore a number
of physical processes. We varied the magnetic-field-line
pitch in a set of simulations, which indicated an increas-
ing level of radial turbulent particle transport with de-
creasing pitch. A cross-coherence diagnostic comparing
potential fluctuations at the sheaths with those at the
midplane indicated that all three simulations appeared
to fall into a similar turbulent regime with strongly adia-
batic electrons. The application of this model to investi-
gate turbulence in the Helimak device44,47 has also been
performed and will be reported elsewhere.

The helical-SOL model can be extended by the addi-
tion of a closed-magnetic-field-line region (with periodic
boundary conditions in the parallel direction). While the
Gkeyll code can already perform simulations with peri-
odicity in the parallel direction, additional work is re-
quired to simultaneously include both open and closed-
magnetic-field-line regions in the same simulation. The
addition of good-magnetic-curvature regions and electro-
magnetic e↵ects are also important extensions that will
make this model more applicable to tokamaks. Since our
model is relatively simple compared to a realistic toka-
mak SOL, the helical-SOL model could also eventually
serve as a test case for the cross verification of gyrokinetic
boundary-plasma codes. This test case might be use-
ful for revealing major discrepancies due to di↵erent nu-
merical approaches, sheath-model boundary conditions,
and collision operators implemented in various codes rel-
atively early on in the development cycle before more
significant investments are made.
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TABLE I. Summary of helical-SOL simulation results with
comparison to experimental values for an H-mode NSTX SOL
reported in Zweben et al.

68 . The values of �n,r, Te, and ne

refer to values near the LCFS (the location of which is not
precisely known in the experiments22). Since gas-pu↵ imaging
cannot be used to obtain particle fluxes, the value of �n,r for
the NSTX case is taken from Boedo et al.

24 . The ‘⇠’ symbol
is used here to indicate that there can be large variations in
such quantities between discharges with di↵erent parameters.
Ion temperature measurements in the plasma boundary of
NSTX were not available, so the value of 1–2 (seen on the
AUG and MAST tokamaks49) is assumed.

Quantity Simulation Range NSTX SOL

⌧ac (µs) 4–14 15–40

L

pol

(cm) 2–4 3–5

L

rad

(cm) 1–2.5 2–3

ñ

rms

/n̄ (%) 10–30 20–100

�n,r

�
1021 m�2 s�1

�
3.5–5.1 ⇠4

ne

�
1019 cm�3

�
0.5–1.5 ⇠1

Te (eV) 26–29 ⇠29

Ti/Te 1.5–2 1–2
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Appendix A: Initial Conditions

We consider a problem in which a uniform mass source
S
⇢

and energy source S
E

is continuously active in the
region |z| < L

S

/2. This fluid flows out to perfectly ab-
sorbing boundaries at |z| = L

z

/2. We treat the plasma
as a single fluid with mass density ⇢ ⇡ n

e

m
i

, pres-
sure p = n

e

(T
e

+ T
i

) = 2n
e

T (where T is an average
of the electron and ion temperatures), and energy den-
sity (3/2)n

e

(T
e

+ T
i

), so S
⇢

= m
i

S
n

and S
E

= 3TsrcSn

,
where S

n

is the electron and ion particle source rate and
Tsrc = (T

e,src+T
i,src)/2 is the e↵ective single-fluid source

temperature. This system is described by the steady-
state ideal fluid equations (neglecting thermal conduction
and viscosity)

0 = � @

@z
(⇢u) + S

⇢

, (A1)

0 = � @

@z

�
⇢u2 + p

�
, (A2)

0 = � @

@z

✓
1

2
⇢u3 +

5

2
pu

◆
+ S

E

, (A3)

where u is the fluid velocity, ⇢ is the mass density, and p
is the pressure. We treat the source as having no mean
flow in the z direction.
We integrate these equations from z = 0 to an arbi-

trary position z < L
S

/2 and use the boundary condition
u(z = 0) = 0 to get

⇢u = S
⇢

z, (A4)

⇢u2 + p = p0, (A5)
1

2
⇢u3 +

5

2
pu = zS

E

, (A6)

where p0 ⌘ p(z = 0). The first two equations can be
solved for ⇢ and p respectively, and we obtain a quadratic
equation for u(z) by substituting these expressions into
the last equation. The solution to this system is

p(z) =
3p0 ⌥

p
25p20 � 32z2S

⇢

S
E

8
, (A7)

u(z) =
5p0 ±

p
25p20 � 32z2S

⇢

S
E

8S
⇢

z
, (A8)

⇢(z) =
zS

p

u
. (A9)

Since the pressure cannot be negative, the only physical
solution for small z is the negative branch for u(z) and
the positive branch for p(z). The central pressure p0 is
determined by the boundary conditions at |z| = L

z

/2.
A steady-state solution at a perfectly absorbing wall
requires M � 1 at the wall,84 where the Mach num-
ber M(z) ⌘ u(z)/cs(z) = u(z)/

p
(5/3)p(z)/⇢(z). The

M � 1 requirement is equivalent to the Bohm criterion
for a steady-state sheath. We see that

M(z)2 =
⇢(z)u(z)2

(5/3)p(z)2
=

3

5

p0 � p

p
. (A10)
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The maximum possible value of M(z) occurs at the z
that minimizes p(z). This value zmax turns out to be the
z that makes the radicand in Eq. (A7) zero, so we find
that

z2max =
25

32

p20
S
p

S
E

, (A11)

p(zmax) =
3

8
p0, (A12)

M(zmax) = 1. (A13)

This says that the largest possible value of M is 1
[when z has been made as large as possible, as given by
Eq. (A11)]. This (barely) satisfies the outflow require-
ment that M � 1 at a perfectly absorbing wall. Equa-
tion (A11) then provides a constraint on the value of p0
such that M = 1 is achieved at the end of the source
region, zmax = L

S

/2:

p0 =
L
S

2

r
32

25
S
⇢

S
E

. (A14)

Using this expression for p0, we have the following profiles
in the source region 0 < |z| < L

S

/2:

p(z) = p0

0
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A , (A15)

u(z) =
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In order to use these profiles to initialize a Maxwellian ini-
tial condition for a kinetic simulation, we note that these
profiles correspond to density (n = ⇢/m

i

) and tempera-
ture (T = m

i

p/(2⇢)) profiles in the source region given
by

T (z) =
3

5
Tsrc

0

@3 + 5
q

1� z2/ (L
S

/2)2
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2
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where css =
p
(5/3)2Tsrc/mi

. In the source-free regions
z > L

S

/2 or z < L
S

/2, n(z), T (z), and u(z) are all con-
stant and equal to the value that their respective profiles
evaluated at the corresponding edge of the source region
at z = L

S

/2 or z = �L
S

/2. The 1-D equilibrium pro-
files Eqs. (A16), (A18), and (A19), the density source in
the helical-SOL simulations Eq. (5), and the tempera-
ture profiles of the electron and ion sources are used to
generate spatially varying initial conditions in (x, y, z).

One could go further by calculating the slight di↵erence
between the ion-guiding-center-density and electron-
density profiles that gives the desired equilibrium poten-
tial �(x, y, z) when the gyrokinetic Poisson equation is
solved. For now, we simply set ng

i

(x, y, z) = n
e

(x, y, z)
and initialize with � = 0, as we did in the LAPD simu-
lations of Shi et al. 14 .
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manelli, R. Maingi, J.-W. Ahn, T. Gray, J. Hughes, B. LaBom-
bard, T. Leonard, M. Makowski, and J. Terry, Nucl. Fusion 57,
116023 (2017).

8F. Wagner, Plasma Phys. Controlled Fusion 49, B1 (2007).
9F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberha-
gen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v.
Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Klüber,
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49M. Kočan, J. Gunn, S. Carpentier-Chouchana, A. Herrmann,
A. Kirk, M. Komm, H. Mller, J.-Y. Pascal, R. Pitts, V. Rohde,
and P. Tamain, J. Nucl. Mater. 415, S1133 (2011).
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