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The main results of an intense VDE modelling activity using the implicit 3D extended MHD code
M3D-C1 are presented. A pair of nonlinear 3D simulations are performed using realistic transport
coefficients based on the reconstruction of a so-called NSTX frozen VDE where the feedback control
was purposely switched off to trigger a vertical instability. The vertical drift phase is solved assuming
axisymmetry until the plasma contacts the first wall, at which point the intricate evolution of
the plasma, decaying to large extent in force-balance with induced halo/wall currents, is carefully
resolved via 3D nonlinear simulations. The faster 2D nonlinear runs allow to assess the sensitivity
of the simulations to parameter changes. In the limit of perfectly conducting wall, the expected
linear relation between vertical growth rate and wall resistivity is recovered. For intermediate wall
resistivities, the halo region contributes to slowing the plasma down, and the characteristic VDE time
depends on the choice of halo temperature. The evolution of the current quench and the onset of 3D
halo/eddy currents are diagnosed in detail. The 3D simulations highlight a rich structure of toroidal
modes, penetrating inwards from edge to core and cascading from high-n to low-n mode numbers.
The breakup of flux-surfaces results in a progressive stochastisation of field-lines precipitating the
thermalisation of the plasma with the wall. The plasma current then decays rapidly, inducing large
currents in the halo region and the wall. Analysis of normal currents flowing in and out of the
divertor plate reveals rich time-varying patterns.

I. INTRODUCTION

Of the many reasons a plasma discharge disrupts [1],
Vertical Displacement Events (VDEs) lead to the most
severe forces and stresses on the vacuum vessel and
Plasma Facing Components (PFCs), especially in the
presence of toroidal asymmetries and rotation [2]. Af-
ter loss of positional control, the plasma column drifts
across the vacuum vessel and comes in contact with the
first wall, at which point the stored magnetic and ther-
mal energy is abruptly released. Hot VDEs, where a high
fraction of the pre-disruption energy is released into the
wall, are more damaging compared to cold VDEs where
the thermal and current quench precedes the vertical in-
stability (often causing it) and a large fraction of the
plasma energy dissipates prior to hitting the vessel.

Vessel forces have been extensively modelled in 2D
but, with the constraint of axisymmetry, the fundamental
3D effects that lead to toroidal peaking, sideways forces,
field-line stochastisation and halo current rotation have
been vastly overlooked. Predictive modelling capabilities
[3–10] and engineering tools [11–15] are under develop-
ment. The highly nonlinear multi-physics of disruptions
is tackled via increasingly demanding numerical compu-
tations. The modelling of VDEs is particularly challeng-
ing because the induction and advection terms are as im-
portant as conduction and diffusion terms in the solved
equations. There is no general method for solving these
systems for arbitrary parameters; the range of applica-
bility of all algorithm is limited. The most common ap-
proach to VDE simulations is to impose the evolution of
fields such as plasma current or plasma position [16–20]
and solve for the remaining fields. Given the stiffness of
the underlying equations, there is a risk that forcing the

dynamics spoils the predictive capability of those numer-
ical tools and misleads physical interpretation of their
results. One would hope to be able to model VDEs with-
out interfering with their natural evolution.

In this work, we present the main results of an intense
VDE modelling activity using the implicit 3D extended
MHD code M3D-C1 and share our experience with the
multi-domain and highly nonlinear physics encountered.
At the culmination of code development by the M3D-C1
group over the last decade, highlighted by the inclusion of
a finite-thickness resistive vacuum vessel within the com-
putational domain [21], a series of 3D nonlinear simula-
tions are performed using realistic transport coefficients.

II. SIMULATION SETUP, ASSUMPTIONS AND
PARAMETERS

The modelling is based on the NSTX shot #139536, a
well-diagnosed frozen VDE [22], that has previously been
simulated with the M3D code [23]. The sequence of events
during this hot VDE can be summarised from experi-
mental traces as follows. At 300ms into the discharge,
the feedback control system is partially deactivated in
order to trigger a vertical instability. The current cen-
troid drifts towards the wall in about 50ms, displaying a
largely exponential time trace. The total toroidal current
remains constant during the vertical drift phase but, as
soon as the plasma comes in contact with the wall, the
600kA plasma current decays in about 5ms. The toroidal
wall current rises to almost 400kA and decays over a 10ms
period soon after. The NSTX shunt tiles [24] measure,
during the current quench only, an axisymmetric normal
wall current of 40kA and an n = 1 component of 20kA.
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Figure 1. Anisotropic unstructured mesh used for VDE sim-
ulations. Colours indicate different regions of the mesh: red)
plasma region where extended MHD equations are solved,
blue) resistive wall, green) vacuum region, magenta) ideal
boundary for the magnetic field, orange) location of PF coils.

These experimental figures of merit serve as modelling
targets.

The M3D-C1 simulations are initialised with the
EFIT [25] data from NSTX shot #139536 at 300ms. The
experimental PF currents are used as initial input for
M3D-C1’s Grad-Shafranov solver; the code slightly adjusts
the PF currents through Picard iterations to obtain exact
force balance on the finite element mesh. The equilib-
rium obtained, and thus the vertical instability, depend
weakly on the mesh. The external field produced by the
PF coils remains static throughout the simulation. The
possibility of including a fixed loop voltage has not been
used because no significant effect was observed in pre-
liminary studies. Ideally, one would want to reproduce
the feedback control system, however the goal in this se-
ries of simulations is to highlight the dominant effects,
the timings and sensitivity to various parameter changes
without the complexity of a time-dependent drive.

The MHD fields are discretised in the toroidal direc-
tion with Hermite cubic splines on 24 equidistant planes.
The unstructured triangular mesh, which is the same on
each poloidal plane, provides support for the C1 finite el-
ement solution in R and Z coordinates. Mesh points can
be packed where fine structures and sharp gradients are
expected to form. In the case of downward VDEs, the
triangulation is made denser at the bottom of the vessel
yielding an anisotropic mesh, as depicted on figure 1.

The mesh is decomposed in three regions [21]: i) the

inside of the vacuum vessel (in red on figure 1) where
the extended MHD equations below are solved, ii) the
finite-thickness resistive wall (2cm in all cases here, in
blue in figure 1) where only the magnetic field is evolved
according to ∂tB + ∇× (ηwallj) = 0 and ∇×B = µ0j,
and iii) the exterior vacuum region (in green in figure 1)
where j = 0 is enforced. By construction of the mesh and
because the wall resistivity ηwall is constant, the wall is
axisymmetric. The capability of modelling ports, breaks
or passive conductors with a spatially dependent wall re-
sistivity exists and will be used in future simulations.

The VDE simulations are evolved according to single-
fluid extended MHD equations. M3D-C1 allows for two-
fluid effects and more sophisticated closures, which might
be important to model the plasma-wall interaction and
scrape-off layer physics. Here, the equations solved com-
prise the continuity equation for the fluid density n,

∂tn+ ∇ · (nv) = −D∇2n, (1)

the momentum equation for the fluid mean flow v,

mn(∂tv + v ·∇v) = j ×B −∇p−∇ ·Π, (2)

and the energy equation for the fluid isotropic pressure
p,

∂tp+v ·∇p+Γp∇ ·v = (Γ−1)(ηj2−∇ ·q−Π : v), (3)

coupled to Faraday, Ampère and Ohm’s laws for the mag-
netic field B

∂tB = ∇× [v ×B − ηj] (4)

∇×B = µ0j. (5)

In the equations above, m is the ion mass, the stress
tensor is closed by Π = µ(∇v + ∇vT ) + λ(∇ · v)I and
the heat flux by q = −κ⊥∇T−κ||bb·∇T where b = B/B
and the temperature is T = p/n. The adiabatic constant
is Γ = 5/3.

The boundary of the computational domain (in ma-
genta in figure 1) acts as a perfect conductor for the
magnetic field, where the normal component is held fixed
to its initial value. Section III B demonstrates that the
boundary is sufficiently far away not to affect the evolu-
tion of the VDE. Dirichlet boundary conditions are ap-
plied on the fluid variables at the resistive wall: density
is set to nedge, pressure to pedge and the flow is assumed
to vanish (no slip).

Inside the vacuum vessel (red region in figure 1), the re-
sistivity is a spatially-varying function through the tem-
perature according to the modified Spitzer expression

η(x) =
η0

(T (x)− Toffset)3/2
. (6)

The offset Toffset effectively lowers the temperature just
for computing the plasma resistivity. While its effect
is negligible in the core, this bias provides control over
the resistivity in the so-called halo region beyond the
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last-closed flux-surface. The halo region is initialised
as a uniform cold and low-density plasma through the
choice of edge pressure, pedge ∼ 8Pa, and edge density,
nedge = 0.01 × 1020m−3, so that numerical instabilities
and negative pressure overshoots are avoided during the
vertical drifting phase (advection). The halo tempera-
ture is thus set to Tedge = pedge/nedge ∼ 25eV and the
halo resistivity is approximately ηhalo = 1.4 × 10−5Ωm.
Dividing by the surface area of the halo region, the resis-
tance of the halo region competes with that of the wall,
such that the halo plasma has a damping effect on insta-
bilities, as seen in section III A and section IV. In reality,
the halo is thin, sparse and about three times colder,
which is the reason for using Toffset.

The density diffusion D, heat conductivity (parallel
κ||, perpendicular κ⊥), viscosity coefficients µ, λ and the
ratio to Spitzer resistivity η0 are input parameters. Dif-
fusion prevents sharp structures and negative overshoots
from accumulating. For numerical stability, these trans-
port coefficients are usually higher than realistic values.
It is argued however that, as long as the correct tim-
ings are respected in the simulations, the VDE evolution
is only weakly affected by the adjustment of transport
coefficients.

The equations listed above are solved using implicit
time-stepping [26], a feature that is necessary to perform
stable simulations over long timescales and accurately re-
solve the advection-driven dynamics as well as the wide
separation (and gradients) between Alfvén and resistive
dynamics. Indeed, characteristic Lundquist numbers at-
tained in the simulations are Sp ∼ 106−107 in the plasma
core, Shalo ∼ 100−1000 in the halo region and Swall ∼ 104

in the resistive wall.
Experimental traces indicate that the plasma remains

stable (axisymmetric) during the vertical drifting phase
and preserves its energy content, flux-surfaces and pro-
files. This observation is exploited to save computational
resources and deploy the heavier 3D simulations only dur-
ing the phase when the plasma contacts the wall. Our
simulations are thus first carried out in 2D up until the
linear stability analysis, performed in parallel at frequent
intervals, predicts the fast growth of n 6= 0 modes. This
roughly coincides with when the X-point reaches the wall
and the plasma becomes limited. The nonlinear simula-
tions are resumed in 3D, a few time steps before the time
of contact, and followed until the plasma current has fully
quenched. While 2D nonlinear VDE simulations run to
completion within a week on a few dozen processors, the
3D nonlinear segments, that are launched on thousands
of processors, require months of computation.

III. DRIFTING PHASE AND 2D NONLINEAR
RUNS

The fine-tuning of input parameters is necessary to en-
sure that the appropriate physics regime is reached and
that experimental targets are deliberately met. Sensi-
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Figure 2. Series of 2D simulations with different input pa-
rameters: (top to bottom) vertical position of the current
centroid, toroidal plasma current, toroidal wall current and
average plasma pressure as a function of time for several
wall resistivities, Spitzer resistivities, offset temperatures and
diffusion coefficients. Colours differentiate cases by wall re-
sistivity. Black curves are experimental time-traces. Solid
and dashed lines differ only through the offset temperature,
Toffset = 0 and Toffset = 15eV , respectively. The dotted and
dashed blue cases are the same except for viscosity, which is
two orders of magnitude smaller in the former. The dash-
dotted and dashed red cases are identical except for particle
diffusion and heat conductivity, which are 10 times higher in
the former. The plasma resistivity is multiplied by a factor
30 in all cases except the blue ones, where the exact Spitzer
value is used.

tivity scans are efficiently performed with 2D nonlinear
simulations. Figure 2 shows a series of axisymmetric runs
where input parameters are scanned to alter the timing
of events.

From an MHD point of view, the plasma must be
in excellent force balance with Eddy currents to evolve
on timescales that are about three orders of magnitude
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slower than Alfvénic1. The plasma column thus moves
as a sequence of equilibria, drifting due to the relaxation
of both wall currents [29] and plasma current [30]. The
latter mechanism is subdominant in hot VDEs, but may
become an important aspect of VDE mitigation strate-
gies in e.g. ITER for which the wall time is likely to be
longer than the plasma current decay time.

Comparing the orange, green and red curves on the top
plot of figure 2, the VDE is generally slower when the wall
resistivity is decreased. As a counter-example, the verti-
cal motion is faster in red cases than blue, even though
the wall resistivity is three times lower in the former. The
plasma resistivity is multiplied by a factor 30 in all cases
except the blue, for which the exact Spitzer value is used.
A faster plasma current decay contributes to accelerate
the vertical motion. The blue cases are more consistent
with the fact that the drifting phase lasts for approxi-
mately 50ms while the plasma current remains almost
flat. The red cases better reproduce the fact that the
toroidal wall current reaches more than half of the initial
plasma current during the fast current quench phase.

A higher halo temperature is seen to stabilise the
VDE, as seen by comparing the solid curves with the
dashed curves, where Thalo = 25eV (Toffset = 0) and
Thalo = 9.9eV (Toffset = 15eV) respectively. The effect
is stronger in the blue series, where the plasma current
remains closer to its initial value before touching the wall.
A more thorough investigation of the effect of the halo
temperature is presented in section III A.

The characteristic VDE timescale is, to lesser extent,
sensitive to transport coefficients, as seen by comparing
the red dashed and dash-dotted curves whose particle
diffusion and heat conductivity each differ by a factor 10
(combined difference of a factor 100). The gradual loss of
thermal energy in all cases is an unavoidable consequence
of the relatively high perpendicular heat conductivity re-
quired for numerical stability (possibly aggravated by the
mesh resolution). The decrease in temperature, which
causes the plasma resistivity to increase, may lead to an
acceleration of the vertical motion.

Viscosity has a weak stabilising effect on the VDE,
as noticed when comparing the dotted and dashed blue
curves; this coefficient is about 100 times smaller in the
former case, yielding a slightly faster VDE. Viscosity
helps evacuate strongly sheared flows and is often in-
creased to overcome the accumulation of strong gradi-
ents. The influence of viscosity on the onset of instabili-
ties (in particular 3D) remains to be determined.

1 This statement extended to 3D explains the slow evolution of
external kink modes in devices like JET [27, 28].

10 -5 10 -4 10 -3

wall
 [  m]

10 2

10 3

10 4

V
D

E
 [

s
-1

] 
@

 Z
=

-0
.1

 [
m

]

T
halo

 = 25 eV

T
halo

 = 9.9 eV

T
halo

 = 0.99 eV

Figure 3. Instantaneous VDE growth rate at Z = 0.1[m] as a
function of wall resistivity for different effective halo temper-
atures. The dashed line represents a linear relation. Vertical
dotted lines symbolise the associated halo resistivity. (The
exact value of Spitzer resistivity is used, corresponding to the
same setup as the blue curves on figure 2. Other input vari-
ables are fixed.)

A. Effect of the halo temperature on the VDE
growth rate

As qualitatively shown on figure 2, the characteristic
timescale of the vertical drifting phase depends on the
halo temperature. Indeed, the open field-line region is
filled with a low temperature plasma. The latter is in
direct thermal contact with the wall through high par-
allel heat conductivity κ|| and tends to remain cold and
resistive. However, the cross-sectional area of the halo
region is quite large such that its resistance is compara-
ble to that of the wall. The decay rate of currents in the
halo region is then of the same order as the growth rate
of some instabilities. In this case, the halo is stabilising
since the currents it carries have time to oppose to flux
changes (positive or negative depending on the drive). In
reality, the impact of the halo region on the vertical in-
stability is minor since the scrape-off-layer is thin, sparse
and cold.

The instantaneous growth rate, γVDE(Z) = Ż/(Z −
Zref), gives an estimate of the VDE timescale. Computed
at a fixed vertical position, the scaling of the instanta-
neous growth rate is expected to be linear as a function
of the wall resistivity [29], at least asymptotically when
the wall tends to a perfect conductor. Figure 3 shows the
dependency on the wall resistivity of the instantaneous
VDE growth rate at Z = 0.1[m] for three different halo
temperatures. The blue curve on figure 3, which corre-
sponds to Toffset = 0, deviates significantly from linear
behaviour (depicted by the dashed black curve on figure
3), because the halo region is able to oppose to the down-
ward motion of the plasma. The effect is strongest when
the VDE is fastest and the wall resistivity exceeds the
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Figure 4. Instantaneous growth rates at Z = 0.1[m] for var-
ious wall resistivities using the standard mesh (in red) and
a mesh where the computational domain was extended by a
factor 1.5.

effective halo resistivity (see vertical dotted lines on fig-
ure 3). By adjusting the offset temperature (equation 6)
to decrease the effective halo temperature, linear scaling
is partially recovered at low wall resistivity, as seen on
the red and orange curves on figure 3. The behaviour
of the VDE growth rate in 2D nonlinear simulations is
consistent with previous linear stability analysis [21].

B. Effect of the computational boundary on VDE
growth rate

The edge of the computational domain acts as a per-
fect conductor located at a given distance beyond the ex-
ternal PF coils, enforcing Dirichlet boundary conditions
on the magnetic field in the outer vacuum region. The
computational boundary may have a stabilising effect on
the vertically displacing plasma if positioned too close,
due to artificial mirror currents that freeze the normal
component of the magnetic field. Figure 4 compares two
scans of the instantaneous VDE growth rate varying the
wall resistivity at Z = 0.1[m] for different computational
boundaries. The red curve on figure 4 relates to the mesh
shown on figure 1. The black curve is for a mesh whose
boundary is expanded outwards by 150%. The compari-
son demonstrates that the location of the computational
boundary has almost no effect on the evolution of the
VDE in the slower (more realistic) cases.

C. Effect of the mesh density on VDE growth rate

The resistive wall, which is 2cm thick in our simula-
tions to be consistent with drawings of the NSTX vacuum
vessel [22, figure 1], may develop skin currents. It is easily
verified that the mesh is sufficiently dense to resolve such
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Figure 5. Instantaneous growth rates at Z = 0.1[m] for vari-
ous wall resistivities using the standard mesh (in black) and
a mesh whose point density is about 4 times higher (in red).

sharp structures. The skin depth due to the vertical in-
stability is estimated to be δ =

√
2ηwall/γVDEµ0 & 10cm,

while the typical dimension of a triangle within the un-
structured mesh is ∼ 1cm. Figure 5 confirms that the
VDE growth rate is identical when the mesh is denser by
a factor 4.

IV. CONTACT PHASE AND 3D NONLINEAR
RUNS

In this section, the evolution of two 3D simulations,
whose settings and histories slightly differ, is discussed.
The first case is launched with higher values of halo tem-
perature Thalo = 25eV (Toffset = 0) and wall resistivity
ηwall = 4.9 × 10−5Ωm corresponding to the green curve
on figure 2. The second case is run with Thalo = 9.9eV
and ηwall = 1.9× 10−6, identical to the dashed-red curve
on figure 2.

The moment the column comes in contact with the
wall coincides with a change of physics regime. During
this phase, the plasma current decays abruptly and the
plasma is prone to non-axisymmetric deformation. The
onset of 3D instabilities occurs because i) the plasma
violently becoming kink unstable as flux-surfaces are
peeled off and the edge q drops below a certain thresh-
old (qedge . 2), ii) the compression of flux near the
wall leading to current density clumps and edge modes
(peeling-ballooning type). In both scenarii, flux-surfaces
are destroyed and thermal energy is efficiently released
through parallel heat transport along stochastic field-
lines, as exemplified on figure 6 showing a sequence of
Poincaré sections for the green 3D case. In both simula-
tions, toroidal modes are triggered near the edge of the
plasma, breaking the flux-surfaces from the outside-in.
The resulting downfall of temperature makes the plasma
resistivity soar, thereby precipitating the current quench.
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Figure 6. Poloidal cross-section at φ = 0 and Poincaré plot of
magnetic field-lines in the green 3D case of figure 2. Yellow
arrows represent the magnetic field at the wall. Blue (red)
arrows portray the current density flowing in (out) of the
wall. Green arrows depict the Lorenz force at the wall. Flux-
surfaces are destroyed by toroidal modes initially near the
edge of the plasma and progressively penetrating inwards.

In response to the rapid decay of toroidal current in the
core, current is driven in the open field-line region (halo)
connecting to the wall.

Figure 7 provides a detailed comparison between the
2D and 3D evolution for the two cases. The time tmaxIw ,
when the toroidal wall current reaches its maximum value
in the 2D simulations (figure 2), is used as a reference to
normalise the x-axis and overlay the green and red cases
of figure 2 in a meaningful way.

In the green case, the plasma remains axisymmetric
until it thermalises with the wall temperature. Toroidal
modes appear only at the end of the slow thermal quench,
when the plasma has considerably shrunk. The halo re-
gion, whose temperature is relatively high, acts as a sta-
bilising shell by broadening the contact area with the
wall. The effect of non-axisymmetric toroidal modes on
the course of events is weak since the plasma and wall cur-
rents return to their axisymmetric value after the brief
appearance of 3D modes. Harmonics rise and decay in
proportion with a dominant n = 2 component.

In the red case, the onset of toroidal modes comes at
an early stage. Their presence is far more disruptive, as
seen by the fact that both the plasma thermal energy and
plasma current are abruptly released. Accordingly, the
toroidal wall current shoots up in order to preserve total
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Figure 7. Comparison between 2D and 3D simulations during
the contact phase: (top to bottom) toroidal plasma current,
toroidal wall current, average plasma pressure and amplitude
of n = 1− 4 toroidal modes as a function of time. The x-axis
is normalised to the reference time when the toroidal wall
current reaches its maximum for fair comparison. The green
curves refer to the green cases on figure 2. The parameters of
the red curves are identical to the red dashed curve on figure
2. In the bottom plot, the data of both 3D cases are overlaid
with the same colour scheme, which labels mode number. The
spikes on the left occur in the red case while the spikes on the
right in the green case.

flux. The time-window for toroidal modes is wider than
in the green case. Toroidal harmonics arrive in waves,
cascading from high to low mode numbers. The n = 4
mode is the first to reach its peak value, followed by a
strong n = 2 mode which dominates the spectrum until
an n = 1 ultimately takes over.

Figure 8 presents a time sequence of the current den-
sity on the divertor plate of the device, where the toroidal
component is depicted in black arrows and the normal in
red/blue colours. The toroidal angle has been straight-
ened out in the y-axis while the x-axis represents the
radial length along the width of the divertor plate. Both
3D simulations exhibit rich patterns and similar features.
Only the green case is reported on figure 8. The contact
line, identified as the separation between red and blue
colour, stays roughly at the same radial position. At first,
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Figure 8. Current density on the divertor plate. Horizontal
axis is the width of the plate and vertical axis is the toroidal
angle normalised to 2π. Colours represent the normal com-
ponent and arrows depict the toroidal component.

the toroidal current points in the opposite direction from
the plasma current, in response to the vertical plasma
motion. As the toroidal current transitions towards the
co-current direction, high-n patterns are visible in the
normal component of the current density near the con-
tact line. These footprints cascade into an n = 2 pertur-
bation, present also in the toroidal component. The non-
axisymmetric patches ultimately decay and the current
density on the divertor plate flows in the co-current direc-
tion as the plasma vanishes into the wall. In comparison,
shunt tiles, located at discrete poloidal and toroidal lo-
cations at the bottom of NSTX vessel, routinely measure
the induced currents in the open-field line region con-
necting with the wall. The toroidal resolution of these
shunt tiles is enough to resolve the n = 1 component
only. While the amplitude of normal currents qualita-
tively match between the experimental traces and the
simulation diagnostics, the mode number, duration, tim-
ing and rotation of halo current substantially differ. Al-
most no global (n = 1) rotation of the halo currents is
observed in our simulations. At a fixed poloidal location,
the patterns rotate only due to a shearing effect which
arises from scraping-off of outer flux-surfaces and reach-
ing lower values of the q-profile. On the other side of the
contact line at equal distance, the pattern rotates in the
opposite direction. The lack of rotation in the simula-

tions is a consequence of solving single fluid MHD model
and the presence of an strictly axisymmetric wall. Includ-
ing more physics (two-fluid, sheath, 3D wall geometry)
at the plasma-wall boundary would provide the drive (or
locking mechanism) for n = 1 rotation. Only then can
our simulations be compared with experimental halo ro-
tation databases. The numerical implementation of the
realistic plasma-wall interaction is however far from triv-
ial, especially in fully 3D nonlinear simulations.

V. CONCLUSION

The modelling of NSTX hot VDE shot #139536 was
performed using the M3D-C1 code, recently upgraded to
include a finite-thickness resistive wall within the com-
putational domain. The sequence of events observed in
the experiment was matched by scanning the input pa-
rameters until realistic conditions were established. The
drifting phase, during which the plasma is immune to
non-axisymmetric modes, was approached using nonlin-
ear 2D simulations up until the X-point reached the wall.
Beyond this point, simulations were resumed to include
3D effects for the remainder of the VDE, a task about an
order of magnitude more computationally intensive.

The series of 2D simulations revealed an acute sensi-
tivity of the timing of events and the drive of the vertical
instability to changes in input parameters, especially the
choice of wall resistivity and halo temperature. The in-
stantaneous growth rate was shown to deviate from an
expected linear relation with wall resistivity. The halo
region was found to stabilise the vertical motion of the
plasma column. The use of a small offset to lower the
temperature in the Spitzer expression conveniently in-
creased the halo resistivity to realistic values such that
linear scaling of the VDE growth rate was recovered at
low wall resistivity.

The 3D evolution of two cases was analysed from the
point of contact until the vanishing of the plasma cur-
rent. The halo region was shown to be responsible for a
late onset of toroidal modes in the case where the halo
temperature was unbiased. In the case where the ef-
fective halo temperature was brought to realistic values
by an appropriate temperature offset, instabilities lead
to an abrupt quench of thermal and magnetic energy.
Poincaré plots revealed that the flux-surfaces were pro-
gressively destroyed by inwards-penetrating edge modes.
The stochastisation of field-lines lead to parallel heat
transport, thereby rapidly cooling the plasma. The fast
decay of plasma current that follows from the increased
resistivity induces currents in the open-field line region.
The patterns created by the normal component of the
current density to the divertor plate was seen to cascade
from high-n to low-n mode numbers.

With an experimental estimate of the width of the halo
region, the correct halo temperature could be inferred
for producing more accurate simulations. Determining
the halo width requires an increase of the poloidal reso-
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lution of shunt tiles in present-day machines. The topic
of halo current rotation was vastly unaddressed in this
series of simulations. Limiting factors include boundary
conditions, the physics of plasma-wall interaction and the

axisymmetry of the resistive wall. A proper benchmark
with experiments of the complex rotation and shearing
patterns of halo currents however requires an increase of
the toroidal resolution of shunt tiles in today’s devices.
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