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Abstract

Collisional particle transport is examined in several toroidal plasma devices in the presence of

perturbations typical of modes leading up to a disruption, of saturated tearing modes, or of unstable

Alfvén modes. The existence of subdiffusive transport for electrons is found to occur in some cases

at very low mode amplitudes and to also exist even for ions of high energy. Orbit resonances

can produce long time correlations and traps for particle trajectories at perturbation amplitudes

much too small for the orbits to be represented as uniformly chaotic. The existence and nature of

subdiffusive transport is found to depend on the nature of the mode spectrum and frequency as

well as the mode amplitudes.
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I. INTRODUCTION

It is well known that transport is not always diffusive in situations involving stochastic

magnetic fields[1–4]. These publications evaluate the transport in terms of characterizations

of the field, such as correlation lengths and times, related to the Kubo number, and the

Kolmogorov length, and particle orbit properties such as the gyro radius and collision rates.

But it is not clear from these publications to what degree the modification of particle diffusion

will occur in typical plasma discharges. Of particular interest is the nature of ion and electron

transport in the early stages of the onset of a tokamak disruption, or in the presence of

small amplitude Alfvén modes, where the orbits are not uniformly chaotic and not simply

characterized in terms of parameters assuming a homogeneous stochasticity. In the vicinity

of stochastic threshold[5–8] there exist long time correlations due to remnant resonance

islands that make the use of the random phase approximation[9] invalid to evaluate particle

transport, and both simulations[10] and experiments[11] have indicated that its use can lead

to incorrect results. Resonances produce long time traps that make the resulting particle

distribution in time very nonuniform in space[7], and change the nature of the transport.

In the reversed field pinch in Padova, (RFX)[12, 13] , where the amplitudes, phases, and

structure of the saturated tearing modes are well known, the transport can be evaluated

and is found to be subdiffusive[8]. In tokamaks the state leading up to a disruption is

characterized by the presence of large scale tearing modes, often comprising modes with

m/n = 2/1, and m/n = 3/2, where m and n are poloidal and toroidal mode numbers[14].

However, the initial state, with relatively small amplitudes, is very far from being uniformly

stochastic, and standard methods of calculating transport by approximations which assume

such homogeneity are not warranted. Furthermore, models which include particle trapping

and the decorrelation of the trapping make assumptions about the nature of the traps and

the process of release.

In this work we examine collisional particle transport in the presence of magnetic

perturbations associated with instabilities commonly found in toroidal confinement devices.

The nature of the particle transport is studied as a function of the magnitude of the

perturbations, the particle energy, and the collision rate, to discover the onset of anomalous

transport and its persistence for perturbation amplitudes above stochastic threshold. We

use the cases of the slowly evolving large scale perturbations associated with the onset of
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a tokamak disruption, the saturated tearing modes seen in a reversed field pinch, and the

high frequency short scale peturbations given by unstable Alfvén modes.

Particles are followed using the guiding center code Orbit[15]. The guiding center

Hamiltonian is

H = ρ2
∥B

2/2 + µB + Φ, (1)

where ρ∥ = v∥/B is the normalized parallel velocity, µ is the magnetic moment, and Φ the

electric potential. The field magnitude B and the potential may be functions of the poloidal

flux ψp, the poloidal angle θ and also the toroidal angle ζ if axisymmetry is broken.

The equations of motion in Hamiltonian form are

θ̇ =
∂H

∂Pθ

Ṗθ = −
∂H

∂θ

ζ̇ =
∂H

∂Pζ

Ṗζ = −
∂H

∂ζ
, (2)

where canonical momenta are

Pζ = gρ∥ − ψp, Pθ = ψ + ρ∥I, (3)

and ψ is the toroidal flux, with dψ/dψp = q(ψp), the field line helicity. The functions g(ψp)

and I(ψp) pertain to the equilibrium, with g giving the toroidal and I the poloidal field

magnitudes.

The equations of motion are easily generalized[16] to include flute-like perturbations of the

form δB⃗ = ∇×αB⃗ with B⃗ the equilibrium field and α =
∑

m,n αm,n(ψp)sin(nζ −mθ−ωnt).

The perturbation α has units of a length, simply related to the cross field ideal displacement

produced by the mode, and is normalized with respect to the major radius of the device. We

consider modes with frequency much smaller than the cyclotron frequency, so the magnetic

moment µ is conserved. Tearing modes have long scale lengths, so the averaging produced

by gyro motion is not expected to be significant, but to be certain to include any such effect

for Alfvén modes with short scale lengths, we have included four point gyro orbit averaging

in the guiding center analysis of high energy ions. It is found that this inclusion does not

change results.

In section II we examine tearing modes in ITER[17] in the evolution of states preceding

a disruption. In section III we examine a spectrum of Alfvén modes in NSTX[18], and
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FIG. 1: ITER reversed shear equilibrium (left) and q profile (right), B = 50.1 kG on axis.

in section IV a spectrum of tearing modes in ASDEX[19] preceding a disruption. Section

V treats the configuration of saturated tearing modes in the reversed field pinch RFX. In

section VI we look at a spectrum of Alfvén modes observed in a DIII-D[20] equilibrium with

a local minimum in the q profile. and in section VII are the conclusions.

II. ITER

We consider an advanced scenario equilibrium for ITER[21]. The equilibrium and q profile

for case 40000B11 at 250 sec, a strongly reversed shear equilibrium, is shown in Fig. 1. The

toroidal field on axis is 50.1 kG.

Disruption simulations[22, 23] typically show a large 2/1 island and a smaller 3/2 island

driving a 5/3 island to overlap with the 2/1 producing a stochastic domain. In the present

work perturbations associated with tearing modes are added to the equilibrium, producing

resonance islands at rational surfaces where the field helicity q equals the rational number

m/n. The perturbations are not advanced in time, but simply used at a given amplitude to

study their effect on the particle transport. The particle velocities are such that the long

time scales for mode growth and rotation can be ignored.

The behavior of collisionless transport near threshold of D = (A−Ac)p with p = 3 and Ac
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FIG. 2: Kinetic Poincaré plots, with amplitudes A = 0.3 (left) and 1.0 (right), shown

versus the normalized poloidal flux ψp.

a critical amplitude has been found for the standard map[6] and for other systems[24, 25].

In this work we examine only collisional transport, so this threshold behaviour is masked

and not observable.

A. Thermal Ions

A kinetic Poincaré plot is used to show the nature of the particle trajectories. These are

not plots of the magnetic field lines, but of 1 keV deuterium trajectories with µ = 0, to

show the effect of the field on the particles. Modes used were zero frequency global tearing

modes with m/n = 3/2, 2/1, 3/1, and 4/1 with maximum amplitudes α2,1 = 2 × 10−3A,

α2,3 = 2× 10−4A, α3,1 = 4× 10−4A, α4,1 = 4× 10−4A, and particle transport was examined

for the amplitude A in the range 0 < A < 1. Poincaré plots for A = 0.3 and A = 1 are

shown in Fig. 2. For A = 0.3 many KAM[26] surfaces are still seen to be intact, with the

dominant resonances due to the 3/2 and the 2/1 modes clearly present. The 5/3 resonance

is also visible and there are of course many higher order Fibonacci sequence islands present,

some of which are visible in these plots. Even small amplitude modes influence long time

particle trajectories.
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FIG. 3: An example of initial and final ion densities, A = 0.9 for collision rate νT = 0.01.

To examine collisional transport we launch particles near the mid radius, at ψp =

0.6, uniform in pitch, and follow them for many collision times. A monoenergetic

deuterium distribution is used, along with a simple energy conserving pitch angle scattering

operator[27]. We study diffusion in the canonical momentum Pζ . The value of (Pζ(t) −

Pζ(0))2 is recorded as a function of time and averaged over the distribution. Times are

given in units of the toroidal transit time, T =0.13 msec for E = 1keV , and the particles

are followed for ten thousand toroidal transits, for 10 or 100 collision times. Data is time

averaged for one thousand steps over all 500 particles before producing a plot point, so each

plotted point consists of an average over 5 × 105 evaluations of Pζ . In Fig. 3 are shown

the initial and final distributions in ψp for a large value of the amplitude, A = 0.9 and

collision rate, νT = 0.01, showing that the distribution remains within the plasma, but

extends to most of it. Larger values of mode amplitudes are difficult to examine because of

the limitation of the plasma, giving a clear saturation of the evolution of Pζ and modifying

the evaluation of the transport.

We are interested in the asymptotic nature of the transport. To examine this we fit

the time history of (Pζ(t) − Pζ(0))2 to Dtp using only late times, discarding the initial

behavior, using a least square analysis and finding the best values of D and p. In Fig. 4 are

shown examples of this determination for small perturbation amplitude and large collision
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FIG. 4: Plots of the late time values of ion transport in a pre-disruption phase of ITER,

showing the evaluation of p as the slope of line fit to the data. The plots are for A = 0.1,

νT = 0.1, giving p = 1.0 (lower) and A = 0.8, νT = .01, giving p = 0.5 (upper).

frequency, A = 0.1, νT = 0.1, giving p = 1.0 (lower) and larger perturbation amplitude and

smaller collision frequency, A = 0.8, νT = .01, giving p = 0.5 (upper).

Of interest is the onset of subdiffusive behaviour, the mode amplitudes necessary for the

transition, and the nature of the transition. Plots of p and D versus A are shown in Fig.

5. Clearly there are two components to the transport. For very small mode amplitudes,

collisional diffusion occurs through normal pitch angle scattering, and is slightly augmented

by the presence of the resonance islands. But it is normal diffusion and is characterized by

p = 1. As the perturbation amplitudes are increased there is a component due to long time

trapping in complex structures, leading normally to subdiffusion with p = 0.5. Collisions

are given by νT = .01 and 0.1 with T the toroidal transit time. The values of p and D both

increase monotonically with the collision frequency, but weakly as long as long time flights

are possible, with the collision time long compared to the toroidal transit time. Particles

must perform flights consisting of several toroidal transits for the effects of the complex orbit

traps to be perceived, and when the collision time corresponds to only ten toroidal transits

the transport is not as strongly modified. Note that the anomalous transport begins for

surprisingly small amplitudes, corresponding to a structure showing only small domains of
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FIG. 5: Asymptotic ITER ion transport fit by < δP 2
ζ >= Dtp. Plots of p (left) and D

(right) vs A. The lowest curves for p are for 1 keV ions with νT = 10−2 and 10−1

(triangles), and the upper curve is for 10 keV ions with νT = 10−2 (squares), with T the

toroidal transit time. The constant D is somewhat different, increasing dramatically with

A for 1 keV ions with νT = 10−2 to above the values for νT = 10−1 (triangles) and that for

10 keV ions (squares) over much of the range of A.

stochasticity, but which nevertheless harbor long time traps for particle motion. For 1 keV

ions with νT = .01 the transport is already subdiffusive for A = 0.3, corresponding to the

first Poincaré plot shown in Fig. 2.

In general, as the perturbation amplitude is increased, at some point the orbits become

stochastic enough that the transport returns to be diffusional, with p = 1. We cannot observe

this transition in this system because the limited size prohibits evaluations for larger mode

amplitudes. To this end we also examined a more uniform level of stochasticity in a simple

circular equilibrium with 1 < q < 3 using many small islands of uniform width, with n =

20 and 21 < m < 60, for which the stochastic orbit threshold was approximately constant

across the plasma. In this case a long domain of amplitude with subdiffusive transport with

p = 0.5 was observed, followed by an abrupt return to normal diffusion with p = 1, at a

perturbation level about three times the amplitude of the stochastic threshold. This is the

amplitude at which the random phase approximation becomes valid.
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FIG. 6: Asymptotic ITER electron transport fit by < δP 2
ζ >= Dtp. Plots of p (left) and D

(right) vs A for 10 keV electrons with νT = 10−1. The constant D increases monotonically

with amplitude A, but much more slowly after subdiffusion is attained.

B. Electrons

For electrons we carried out the same simulations using the ITER equilibrium consisting of

105 toroidal transits, or 70 msec, using energies of 10 keV and fairly large collision frequency,

with νT = 0.1, giving 104 collision times. Large times were necessary because of the very

small values of the transport. Electrons achieve subdiffusion for remarkably small values of

the perturbations, well below values allowing a uniform representation in terms of stochastic

properties. In Fig. 6 is shown the approach to subdiffusion (p = 0.5) for very small values

of mode amplitudes, and the values of the associated constant D. The constant D increases

linearly with A for all values, but much more slowly in the subdiffusive regime. Shown in

Fig. 7 is the determination of 10 keV electron transport in ITER with mode amplitudes of

A=0 (p = 1) and A = 0.15 (p = .5), and the initial and final particle distributions for a

simulation of 105 transits. The initial domain is barely exceeded, transport is so slow that

most of the particles remain within the original domain. Most of the domain covered by the

particles consists of good KAM surfaces, but of course there are very small resonances, not

visible in a large scale Poincaré plot, still influencing the electron orbits.
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FIG. 7: Determination of 10 keV electron transport in ITER with mode amplitudes of

A=0 (p = 1, lower) and A = 0.15 (p = .5, upper) (left), and initial and final ITER

electron distributions after 104 toroidal transits for A = 0.1 (right).

The units of D are in terms of poloidal flux and transit time. At A = 0 we have

D = 10−9 in these units. Using the transit time of 7×10−7sec, and noting that for electrons

Pζ is approximately the poloidal flux, and using the electron gyro radius of 7× 10−3cm, we

find this value agrees with the Pfirsch-Schlüter value of diffusion of D = νq2ρ2/2, giving

approximately 7 cm2/sec. Note from Fig. 1 that q is very near 1.

There are many publications concerning electron heat flux in stochastic fields, especially

associated with a particular choice of equilibrium for ITER, called the CYCLONE[28] base

case. Wang et al [29] use a simple enumeration of resonance islands and separations along

with associated Poincaré plots to estimate proximity to stochastic threshold for a spectrum

of 16 toroidal modes. They find the approximate stochastic threshold in this manner, but

there now exist much more powerful methods to discover this[30, 31]. They then follow

electrons for a total of 3000 toroidal transits. With levels of fluctuations such as shown

in their plots probably one can fit the transport to Dt or to Dt.5 with equal accuracy. In

addition, the Poincaré plots are made for zero frequency, valid for estimating the stochastic

threshold for transport only provided the electrons can make very many toroidal transits in

one mode period and in one collision time. Diffusion is assumed, but since the spectrum
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FIG. 8: NSTX equilibrium (left) and q profile (right).

is very near stochastic threshold it is not clear this is warranted. In addition they refer

to an exact relation between the magnetic field diffusion coefficient and associated electron

heat flux, given by Harvey et all [32], but this paper again assumes that the field lines

diffuse radially, making use of the random phase approximation used previously to calculate

electron diffusion in a stochastic field[9].

III. NSTX

We examine discharge 141711 in NSTX at a time of 470 msec. In Fig. 8 are shown the

equilibrium and the q profile. This discharge provides an example in which unstable Alfvén

modes grow to a level which modifies the particle distribution without significant change in

mode frequency, and with amplitudes which permit the use of linear eigenfunctions. Ten

modes observed were analyzed by NOVA, given in [33].

The frequency of the modes is around 100 kHz, and the transit time for a 2 keV electron

is 2 × 10−7 sec, so an electron explores 50 toroidal transits in one mode period, enough to

explore the intricities of the field structure. On the other hand ion velocity is too small to

explore the field structure in one mode period, and ion transport was found to be diffusive

for all amplitude values.
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FIG. 9: Mode harmonics for TAE modes in NSTX (left) and the mode amplitudes as a

function of the poloidal mode number, m (right).

FIG. 10: Asymptotic transport fit by < δP 2
ζ >= Dtp for 2 keV electron transport for TAE

modes in NSTX. Plot of p vs A (left) , and plots for A = 1.5 with p = .41 Lower), A = 1.7

with p = .21 (middle), and A = 1.75 with p = .16 (upper).
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In Fig. 9 are shown the mode harmonics as well as a plot of the mode amplitudes versus

the poloidal mode number m. In the case of NSTX there are very few modes with amplitude

above one tenth of the maximum amplitude mode. Large amplitudes are seen for m = 5,

with smaller contributions with m = 22, m = 49, and m = 59.

In Fig. 10 is shown the transport fit to < δP 2
ζ >= Dtp for 2 keV electrons as a function

of mode amplitude. Electrons are seen to make a fairly rapid transition to subdiffusive

behavior at about the experimentally observed mode amplitudes, A = 1. In addition, the

often quoted value of p = 0.5 is not what is observed. At the transition the transport quickly

changes to p = 0.4 and then after this drops to p = 0.16 just before the onset of complete

stochastic loss. In Fig. 10 the determinations of the value of p are shown for A = 1.5, for

A = 1.7, and for A = 1.75. Values much above A = 1.7 cannot be obtained, the amplitudes

are such that the particles are lost before a reasonable determination can be made.

IV. ASDEX

Now we consider ASDEX in a state leading up to a disruption, the pre-disruptive phase of

the L-mode, high density shot 30984, at t=1.398 seconds. The shot was part of a campaign

aimed at avoiding disruptions by applying electron cyclotron heating at the m/n = 2/1

resonance [34, 35], and some evidence was found in the past of a role of magnetic field

stochastization in forming the path to a disruption in ASDEX [36]. The equilibrium and

q profile are shown in Fig. 11, and the tearing mode harmonics in Fig. 12. The harmonic

content consisted of a single mode with n = 1 and m = 2, 3, 4, 5, and the frequency was

1.7 kHz. Eigenfunctions are described as three-parameter functions, customarily used in

ASDEX to match the 2/1 island width with ECE measurements [37]. In our case study,

the eigenfunction amplitudes and phases were matched to the measurement of amplitude

and phase of the Ḃθ signal, as measured by the in-vessel C09 pick-up probes: given the

equilibrium at a given time instant, eigenfunctions are then determined through a simple

matrix inversion. Still some indeterminacy is present (especially for the high-m numbers),

due to the well-known pollution of the pick-up probe signal by means of the in-vessel passive

structures, primarily the Passive Stabilization Loop (PSL) [38]. The complete removal of

the pollution is still work in progress: but in the present study we are interested in a general

feature of transport, and in a parametric study similar to that shown previously for ITER,
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FIG. 11: ASDEX equilibrium (left) and q profile (right), B = 24.36 kG on axis.

FIG. 12: ASDEX harmonics in a pre disruptive state, consisting from left to right, of

m = 2, 3, 4, 5, all with n = 1. Mode frequency was 1.7 kHz.

we will show that the main message of the analysis does not change, i.e. that transport is

subdiffusive.

The Poincaré plot shown in Fig. 13 was made with co-passing collisionless electron orbits
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FIG. 13: ASDEX electron diffusion at different locations in the device. For ψp = 0.4 the

transport was superdiffusive with p = 1.23, shown in the middle curve on the left, with the

final particle distribution shown with a horizontal line in the Poincaré plot at θ = 0.1. .

Particles launched at ψp = 0.5 exibited subdiffusive transport with p = 0.2. shown with

the lower data on the left, with the final particle distribution shown with a horizontal line

in the Poincaré plot at θ = 0.2. Particles launched at ψp = 0.75 are within the stochastic

domain existing outside the ψp = 0.6 surface and the transport was subdiffusive with

p = 0.5, shown with the upper data on the left, with the final particle distribution shown

with a horizontal line in the Poincaré plot at θ = 0.3.

all with µ = 0, to show the nature of the resonances. Clear resonance islands are seen for

each harmonic, as well as a nonlinearly generated resonance at m/n = 5/2.

To study transport 300 ev electrons were launched with a uniform pitch distribution, a

fixed initial flux surface, and a given pitch angle scattering rate. They were followed for a

time of 3000 toroidal transit times, corresponding to 30 collision times. Transit time for an

electron is this configuration is 1 µsec, so the particles were followed for 3 msec. The data

for the evolution of the canonical momentum Pζ was necessarily truncated by discarding the

initial ballistic motion and in some cases also the final points because particles had reached

the boundary of the device.

We chose three different initial surfaces. Particles launched at ψp = 0.4 are within the
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FIG. 14: Transport determination for different mode amplitudes as a function of initial

particle position.

resonance island produced by the m = 2 and in this region the transport was superdiffusive

with p = 1.23, due to the large excursions in the m = 2 resonance. The points in the

plot of dP 2
ζ are clearly seen to be those with the largest slope. The final extent of the

particle distribution for this case is shown with a horizontal line at θ = 0.1, seen to ocupy

the entire range of this resonance. Particles launched at ψp = 0.5 are near the nonlinearly

produced 5/2 resonance, but where many good KAM surfaces also exist, and in this region

the transport was subdiffusive with p = 0.2. In the plot of dP 2
ζ in addition to the small

slope this trajectory also has a very small value of transport. The final extent of the particle

distribution is also shown with a horizontal line at θ = 0.2. Particles launched at ψp = 0.75

are within the stochastic domain existing outside the ψp = 0.6 surface and in this region the

transport was subdiffusive with p = 0.5, and with a much larger coefficient than observed

at ψp = 0.5. The final extent of this particle distribution is also shown with a horizontal

line at θ = 0.3, and occupies the entire stochastic domain outside the ψp = 0.6 surface.

It is interesting to note that the large m = 2 resonance, with no apparent stochasticity

nevertheless produces much stronger electron transport than does the stochastic domain,

the island effectively providing rapid mobility across it.

We also investigated the dependence of the transport on the amplitude of the
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perturbations. The result is shown in Fig. 14. The values of p are shown for the three

launch locations, ψp = 0.4, 0.5, 0.75 for the amplitudes shown in Fig. 12 multiplied by 0.6,

and 0.8 and 1.0. The results are remarkably incependent of this change in mode amplitude,

the only difference observed is that for amplitude reduction by 0.6 the value at ψp = 0.4 is

even larger than the other determinations, with p larger than 2.

V. RFX

The Rechester-Rosenbluth (RR) formalism is often used to describe energy and particle

transport in the reversed-field pinch, and in particular in the RFX device in Padova [13].

The RR theory in the RFP is complemented with the Harvey equation for particle and

energy transport [32] and a diffusive-convective scheme for the fluxes (Fick’s law) in the

form Γ = −D∇n + v · n. Yet, the RR theory would predict a particle diffusivity scaling

D ∼ (δB/Bθ(a))2 with the normalized tearing mode amplitude, which corresponds to an

energy confinement time scaling τE ∼ a2/D ∼ (δB/Bθ(a))−2. On the contrary, experiments

show a scaling D ∼ (δB/Bθ(a))1.5 for the diffusivity [39] and a different scaling for the

energy confinement time τE ∼ (δB/Bθ(a))−1 [40]. We will demonstrate that both results,

the exponent β = 1.5 < 2 for the diffusivity scaling, and the inconsistency with the energy

confinement scaling, are signatures of a subdiffusive nature of transport. In a preceding

work [8] we have already shown that ion transport in the RFX is subdiffusive, with exponent

0.7. If one sticks with a diffusive-convective scheme, a phenomenological (D, v) can be still

obtained from a steady-state local density evaluation with Orbit (see [8] for details): in this

sense, the term v (“pinch” velocity) in the Fick’s law Γ = −D∇n + v · n can be interpreted

as the subdiffusive correction to the diffusive evaluation of the fluxes. In these simulations,

tearing-mode eigenfunctions are obtained from the 3D magnetohydrodynamic (MHD)

nonlinear, visco-resistive cylindrical code SpeCyl which computes a chaotic, conventional

multiple-mode RFP state at Lundquist S = 3 × 104 and Prandtl number P = 20 [41].

Modes with m = 1 and 7 ≤ n ≤ 26 are considered. Test particles are ions at thermal energy

E = 0.25 keV and normalized collision frequency νT = 0.4 (2.5 toroidal transits per collision

time).

The scaling of the (D, v) values with the normalized mode amplitude is shown in Fig. 15.

D and v increase together as a function of the mode amplitude, which is usually interpreted
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FIG. 15: (a) Diffusion coefficient D and (b) “pinch” velocity v as a function of the

normalized mode amplitude δB/Bθ(a). D and v are obtained through a least-squares fit of

the local density distributions, as explained in [8]. The solid, red line in (a) represents a fit

of the RR formula.

in the RFP as a “confirmation” of the Harvey theory, since also in the derivation of the

pinch velocity from the kinetic equations made by Harvey [32], D and v are proportional.

But the fact that the exponent β = 1.54 < 2 in Orbit ion simulations is a clear signature

that something different is happening. This is made clear if one plots the ion flux, Γ, as a

function of δB/B. This is shown in Fig. 16: the flux scales with the mode amplitude even

better that D, v, but with a different exponent β1 = 0.95 ̸= 1.5! We can interpret the result

in this way: β = 1.5 < 2 shows that the magnetic field is far from being fully stochastic,

with uniform and isotropic chaos. As a consequence, transport is subdiffusive. If transport

is subdiffusive, the total flux Γ must be corrected (at first order) with the “pinch” velocity,

and as a consequence the scaling for Γ is different from the scaling for D, as observed

experimentally [39, 40]. The exponent β1 found for the ion flux in Orbit simulations is

very close to the experimental value −1 of the exponent for τE, experimentally determined

in a large RFX database [40].

We can repeat the analysis done for ITER and NSTX, by considering the asymptotic
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FIG. 16: Ion flux Γ as a function of the normalized mode amplitude δB/Bθ(a). The solid,

red line represents the least-squares fit.

behaviour of particle transport as a function of time. This is shown in Fig. 17 by plotting the

value of the radial spreading (r(t)−r(0))2 as a function of time and averaged over the particle

distribution. In panel (b) in the same figure, the value of the toroidal angle (ζ(t) − ζ(0))2

is shown. Particles are 10000 ions at thermal energy E = 0.25 keV and normalized collision

frequency νT = 0.4 (the same as in Figs. 15,16), initially deposited at ψp/ψp,w = 0.5.

Tearing mode amplitude in this case is fixed at δB/B = 4 %, which is a typical case

for RFX [8]. Particles are followed for 1600 toroidal transits. In Fig. 17(a) it is evident

that, after a short, ballistic behaviour, particles show a clear, radial subdiffusive transport

with exponent p = 0.7. When motion in the angle ζ becomes diffusive (see panel (b)),

even stronger subdiffusion is reached, with p = 0.35. After ∼ 103 toroidal transits, many

particles hit the wall, and ⟨∆r2⟩ saturates. The presence of a diffusive regime in the angle

ζ after a few toroidal transits is due to the fact that, at longer timescales, collisions become

important in reversing direction along the field, making the toroidal motion diffusive [8]

(this is consistent with the collision frequency νT = 0.4).

We can finally check the persistence of subdiffusion as a function of collision frequency:

in Fig. 18 the asymptotic fit of ion transport ⟨δr2⟩ = Dtp is shown for different values

of νT , in the range 5 × 10−3 < νT < 500. Diffusivity is rather large if compared with

tokamaks, D ∼ 10 m2s−1, but it is compatible with the local evaluation of Fig. 15 and with

previous estimates, both experimental [39] and theoretical [42]. The most striking result is
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FIG. 17: Ion transport in a typical, chaotic state in the RFX reversed-field pinch: (a) the

value of (r(t) − r(0))2 as a function of time and averaged over the particle distribution; (b)

the same for the toroidal angle, (ζ(t) − ζ(0))2.

that transport remains subdiffusive in a broad range of collision frequency, with p < 0.8 for

νT < 30. Since the RFX experimental range of H+ collisions is 0.1 ! νT ! 4, this means

that ion transport is always subdiffusive in this device. Just from an academic point of view,

ion transport would turn diffusive, p ≥ 1, for νT ≥ 100, which would correspond to the fully

collisional, Pfirsch-Schlüter regime, which can be accounted for in RFX only with heavy

impurities [42]. Similarly, we can analyze the values of D and p in the case of electrons: this

is shown in Fig. 19. The collisional range is 5 × 10−3 < νT < 70, since νT ≈ 50 is rarely

attained for electrons in the RFX device. Electron transport is even more subdiffusive in

the whole collisional range, with p ∼ 0.4 for typical RFX electron collision frequency. The

values of D are in the range 50 − 200 m2s−1, quite large: it should be noted that anyway

the ambipolar Da ≈ Di, since a strong ambipolar potential develops in the RFX to balance

a too strong electron diffusion [43]. Finally, it is noteworthy that subdiffusion in the RFX

appears at a relatively modest level of perturbation amplitude, δB/B = 4 %.

VI. DIII-D

Deuterium beam ions in DIII-D plasmas drive many toroidicity-induced Alfvén

eigenmodes (TAE) and reversed shear Alfvén eigenmodes (RSAE) unstable. The

mode structure is measured with electron cyclotron emission (ECE) and beam-emission

spectroscopy (BES) diagnostics. Saturated mode amplitudes are derived by scaling the
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FIG. 18: (a), top: Values of D in RFX as a function of normalized collision frequency νT

for ion transport; (a), bottom: the same for the exponent p.

FIG. 19: (a), top: Values of D in RFX as a function of normalized collision frequency νT

for electrons; (a), bottom: the same for the exponent p.
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FIG. 20: DIII-D equilibrium and q profile.

prediction of a synthetic ECE diagnostic applied to NOVA calculated eigenfunctions. The

resultant beam-ion transport is measured by five independent techniques [44, 45], including

spatially-resolved fast-ion D-alpha (FIDA) spectroscopy. The data imply strong central

flattening of the fast-ion profile during the early phase of the discharge when many Alfvén

modes are unstable. In Fig. 20 are shown the equilibrium and the q profile.

We used NOVA calculated eigenfunctions that were experimentally validated by ECE

measurements with the guiding center code ORBIT [15, 46]. The modes were localized near

the plasma core, producing a flattening of the distribution, but no induced particle loss. In

Fig. 21 are shown the modes and a plot of mode amplitudes. DIIID has a wider spectrum

of modes than does NSTX. There are 8 different modes with n values ranging from 1 to 5,

and frequencies ranging from 62 kHz to 80 kHz with a total of 105 poloidal harmonics.

In this case the mode spectrum is broad enough to produce diffusion of ions and electrons

for all mode amplitudes. There is no transition to strong subdiffusive behaviour observed

for either species. The spectrum of m values is very different from the case of NSTX. This

spectrum is uniform enough to make the random phase approximation valid, and to preclude

strong subdiffusion, justifying the use of a diffusion model, employed in analyzing the effect

of modes on the beam profile[45].
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FIG. 21: DIII-D harmonics. There are many harmonics present with comparable

amplitudes, with m between 20 and 100.

VII. CONCLUSION

This paper presents a detailed study of transport in toroidal plasma confinement devices

in states aproaching disruption, with a spectrum of saturated tearing modes, or with

a spectrum of Alfvén modes. For perturbations leading up to plasma disruption in

ITER subdiffusive transport is found for both ions and electrons for values of magnetic

perturbations well below those producing a uniform level of stochasticy allowing more general

methods of evaluation, and for mode amplitudes for which a large scale Poincaré plot of the

orbits appears to consist of well defined KAM surfaces. In general ions are strongly affected

in predisruption states, but not generally by spectra of Alfvén modes, because the high

frequency makes the perturbation effectively random before an ion can complete a sufficient

number of toroidal transits. Electron transport can become subdiffusive for surprisingly

small amplitudes and even for high frequency perturbations, depending on the nature of the

mode spectrum. The exact nature of the perturbed field is important not only for the precise

value of the nondiffusive transport, but also for its existence. Low level field perturbations

can produce complicated structure giving rise to long time correlations and local traps, and

significantly modify particle transport, but if the mode spectrum is sufficiently broad and
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uniform, as seen in DIII-D , the transport can be diffusive for all mode amplitudes. Note

that the kick model[47] for the modification of particle distributions due to Alfvén modes

makes no assumption regarding the nature of the transport.

In many cases the observed subdiffusive transport closely approaches the classically given

dP 2
ζ = Dt0.5, but we also find exceptions to this, with different fractional powers of t. In

RFX the subdiffusive transport leads to an understanding of the energy confinement time

and diffusivity scaling with the perturbation amplitude.

24



Acknowledgement This work was partially supported by the U.S. Department of

Energy Grant DE-AC02-09CH11466.f. This material is based upon work supported by

the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using

the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards

DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by

following the links at https : //fusion.gat.com/global/D3DDMP . This report was prepared

as an account of work sponsored by an agency of the United States Government. Neither the

United States Government nor any agency thereof, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any

specific commercial product, process, or service by trade name, trademark, manufacturer,

or otherwise does not necessarily constitute or imply its endorsement, recommendation, or

favoring by the United States Government or any agency thereof. The views and opinions

of authors expressed herein do not necessarily state or reflect those of the United States

Government or any agency thereof.

∗ Electronic address: rwhite@pppl.gov

[1] M.B. Isichenko, Plasma Phys. Controlled Fusion, 33, 795 (1991)

[2] F. Spineanu, M. Vlad, J. Misguich, J. Plasma Phys. 51, 113 (1994)

[3] M. Vlad, F. Spineanu, J. Misguich, R. Balescu, Physical Review E 67 026406 (2003)

[4] R. Balescu, H.D. Wang and J. Misguich, Phys. Plasmas 1, 3826 (1994)

[5] A. B. Rechester and R.B. White, Phys. Rev. Lett. 44, 1586 (1980)

[6] A. B. Rechester and M.N. Rosenbluth and R.B. White, Physica [4D], 425 (1982)

[7] R.B. White, S. Benkadda, S. Kassibrakis, and G.M. Zaslavsky Chaos 8, 757 (1998)

[8] G. Spizzo, R. B. White, and S. Cappello, Physics of Plasmas 14, 102310 (pages 8) (2007),

URL http://link.aip.org/link/?PHP/14/102310/1.

[9] A. B. Rechester and M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)

[10] R. Paprok and L. Krlin, WDS 14 Proceedings, Physics, 23 (2014)

[11] G. Fiksel, R.D. Bengtson, M. Cekic, D. Den Hartog, S.C. Prager, P. Pribyl, J. Sarff, C.

25



Sovinec, M.R. Stoneking, R.J Taylor, P.W. Terry, G.R. Tynan and A.J. Wootton, Plasma

Phys. Control. Fusion 38 (1996)

[12] S. Martini and the RFX team, Nucl Fusion 47, 783 (2007)

[13] P. Sonato, G. Chitarin, P. Zaccaria, F. Gnesotto, S. Ortolani, A. Buffa,

M. Bagatin, W. R. Baker, S. Dal Bello, P. Fiorentin, et al., Fusion Engineering

and Design 66–68, 161 (2003), ISSN 0920-3796, proc. 22nd Symposium

on Fusion Technology, Helsinki (Finland), 9th-13th September 2002, URL

http://www.sciencedirect.com/science/article/pii/S0920379603001777.

[14] R. B. White, D. A. Monticello, and M. N. Rosenbluth, Phys. Rev. Lett. [39], 1618-1621 (1977)

[15] R. B. White and M. S. Chance, Phys Fluids 27, 2455 (1984).

[16] White, R. B. The Theory of Toroidally Confined Plasmas, third edition, Imperial College

Press, (2014)

[17] ITER Physics Basis Editors, ITER Central Team, Nucl. Fus. 39, 12, 2138 (1999)

[18] S. M. Kaye, M.G. Bell, R.E. Bell, S. Bernabei, J. Bialek, T. Biewer, W. Blanchard, J. Boedo,

C. Bush, M.D. Carter et al, Nuclear Fusion 45:10 (2005) S168S180

[19] M. Keilhacker, Nuclear Fusion, 25, no. 9, (1985)

[20] W. W. Heidbrink, Phys. Plasmas 15, 055501 (2008), and references therein.

[21] Y. Gribov,

ftp://pfctrl@ftp.jp.iter.org/array1/PFcontrol/EQDSKfiles/Code

PET/Scenario 4beta scanPET/

[22] K.I. Hopcraft, A. Sykes and M.F. Turner, Nucl Fusion 28, 1265 (1988)(1984).

[23] B.V. Waddell, B. Carreras, H.R. Hicks and J.A. Holmes, Phys. Fluids 22, 896 (1979)

[24] R.S. Mackay, J.D. Meiss and I.C. Percival, Phys. Rev. Lett. 52, 697 (1984)

[25] J.M. Greene, R.S. Mackay, F. Vivaldi and M.J. Feigenbaum, Physica 3D, 530 (1981)

[26] Kolmogorov, A. N. in Proc. Int. Congr. Mathematicians, Amsterdam, Vol 1, 315 (1957),

Arnold, V. I., Russ. Math. Surv. 18(5):9, (1963), J. Moser, Math. Phys. Kl. II 1,1 Kl(1):1,

(1962).

[27] A.H. Boozer and G. Kuo-Petravic, Phys Fluids 24, 851 (1981).

[28] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G. W. Hammett, C. Kim, J.E.

Kinsey, M. Kotschenreuther, A.H. Kritz, L.L. Lao, J. Mandrelas, W.M. Nevins, S.E. Parker,

A.J. Redd, D.E. Schumaker, R. Sydora and J. Weiland, Phys. Plasmas 7, 969 (2000).

26



[29] E. Wang, W.M. Nevins, J. Candy, D. Hatch, P. Terry, and W. Guttenfelder, Phys. Plasmas

18, 056111 (2011)

[30] C. S. Collins, W. W. Heidbrink, M. E. Austin, G. E. Kramer, D. C. Pace, C. C. Petty, l.

Stagner, M. A. Van Zeeland, R. B. White, Y. B. Zhu, Phys. Rev. Lett 116, 095001 (2016)

[31] R B White, Commun Nonlinear Sci. Numer. Simulations 17, 2200 (2012)

[32] R. W. Harvey, M. G. McCoy, J. Y. Hsu, and A. A. Mirin, Phys. Rev. Lett. 47, 102 (1981),

URL http://link.aps.org/doi/10.1103/PhysRevLett.47.102.

[33] R. B. White, N. Gorelenkov, M. Gorelenkova, M. Podesta, S. Ethier, Y. Chen, Plasma Phys.

Control. Fusion 58 115007 (2016)

[34] M. Maraschek, A. Gude, V. Igochine, H. Zohm, E. Alessi, M. Bernert, C. Cianfarani, S. Coda,

B. Duval, B. Esposito, et al., Plasma Physics and Controlled Fusion 60, 014047 (2018), URL

http://stacks.iop.org/0741-3335/60/i=1/a=014047.

[35] B. Esposito, G. Granucci, S. Nowak, J. Martin-Solis, L. Gabellieri, E. Lazzaro, P. Smeulders,

M. Maraschek, G. Pautasso, J. Stober, et al., Nuclear Fusion 49, 065014 (2009), URL

http://stacks.iop.org/0029-5515/49/i=6/a=065014.

[36] V. Igochine, O. Dumbrajs, D. Constantinescu, H. Zohm, G. Zvejnieks,

and the ASDEX Upgrade Team, Nuclear Fusion 46, 741 (2006), URL

http://stacks.iop.org/0029-5515/46/i=7/a=006.

[37] J. P. Meskat, H. Zohm, G. Gantenbein, S. Günter, M. Maraschek, W. Suttrop,

Q. Yu, and A. U. Team, Plasma Physics and Controlled Fusion 43, 1325 (2001), URL

http://stacks.iop.org/0741-3335/43/i=10/a=304.

[38] M. Schittenhelm and H. Zohm, Nuclear Fusion 37, 1255 (1997), URL

http://stacks.iop.org/0029-5515/37/i=9/a=I06.

[39] F. Auriemma, R. Lorenzini, M. Agostini, L. Carraro, G. D. Masi, A. Fassina, M. Gobbin,

E. Martines, P. Innocente, P. Scarin, et al., Nuclear Fusion 55, 043010 (2015), URL

http://stacks.iop.org/0029-5515/55/i=4/a=043010.

[40] P. Innocente, A. Alfier, A. Canton, and R. Pasqualotto, Nuclear Fusion 49, 115022 (2009),

URL http://stacks.iop.org/0029-5515/49/i=11/a=115022.

[41] S. Cappello, Plasma Physics and Controlled Fusion 46, B313 (2004), URL

http://stacks.iop.org/0741-3335/46/B313.

[42] M. Gobbin, G. Spizzo, L. Marrelli, and R. B. White, Phys. Rev. Lett. 105, 195006 (2010),

27



URL http://link.aps.org/doi/10.1103/PhysRevLett.105.195006.

[43] G. Spizzo, N. Vianello, R. B. White, S. S. Abdullaev, M. Agostini,

R. Cavazzana, G. Ciaccio, M. E. Puiatti, P. Scarin, O. Schmitz,

et al., Physics of Plasmas (1994-present) 21, 056102 (2014), URL

http://scitation.aip.org/content/aip/journal/pop/21/5/10.1063/1.4872173.

[44] W. W. Heidbrink, N. N. Gorelenkov, Y. Luo, M. A. Van Zeeland, R. B. White, M. E. Austin,

K. H. Burrell, G. J. Kramer, M. A. Makowski, G. R. McKee, R. Nazikian, and the DIII-D

team Phys. Rev Lett. 99 245002 (2007) Nuclear Fusion 45 S168-S180 (2005)

[45] W.W. Heidbrink, M. A. Van Zeeland, M. E. Austin, K. H. Burrell, N. Gorelenkov, G. Kramer,

Y. Luo, M. A. Makowski, G. R. McKee, C. Muscatello, R. Nazikian, E. Ruskov, W. M.

Solomon, R. B. White, and Y. Zhu , Nucl Fusion 48, 084001 (2008).

[46] R. B. White, N. N. Gorelenkov, W. W. Heidbrink, M. A. Van Zeeland, Plasmas Physics

Controlled Fusion 52 045012 (2010)

[47] M. Podesta, M. Gorelenkova and R.B. White, Plasma Phys. Control. Fusion 56, 055003 (2014)

28


