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Particle Research
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Wave/particle mini-workshop on 5 year plan, February 12, 2007
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FASTHON PROFILE

The Fast-ion Density Gradient is

Flattened Ww.Heidbrink, IAEA'06
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*The profile remains flat
during the strongest Alfven
activity

« As the activity weakens

] the profile peaks but is still

broader than classically
predicted

1 There is no even remote agreement
~J With theories on AE role in EP transport.

ORBIT => amplitudes are too low
delta B/B ~ 10"-4.

“For this compatrison, the FIDA density profife is nornnalized (o the equilibritim

profite al 1.20s.



Need to dadvance NSTX research in EP area through internal
amplituae measurements

DIII-D internal mode structure

Multichannel, high resolution

diagnostics are needed (standard):

with sensitivity 10*-4 and i R
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IS sensitivity an issue?

» FIReTIP: can we increase sensitivity
and number of channels

« high-k is of interest as well;
coupling to kinetic waves can be studied.
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Advance NSTX research through fast ion distribution/loss
measurements

 NPA/FIDA should complement each other:
— cross machine comparisons with DIII-D is required.

* Augment NSTX loss measurements with (many?) thin foil
Faraday cups:

— need to assess EP losses vs. redistribution,
— can complement NPA/FIDA measurements.
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Multi-mode transport is of high priority for both theory and
experiments: need to study beyond 3 year period

Theory challenges:

ORBIT/NOVA coupling is capable to address some transport issues
is being applied for DIII-D experiments,
multi-mode transport requires theory breakthrough:
measured amplitudes are too low.

M3D has more complete nonlinear model (nonperturbative modes and dynamics)
need to improve numerical efficiency
need to compare/benchmark with theory and experiment.

Experimental challenges:
internal structure, amplitude (reflectometers are good for L-mode plasmas)

diagnostics need to be upgraded to allow fast measurements

mode identification: fishbones/Alfven-acoustic modes(+JET results)/EPMs;
fast ion effects, losses;

data base;
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Must explore unique NSTX (high ) regimes in studies of
new instabilities such as RSAEs and BAAEs (example)

*BAAESs couple two fundamental MHD branches - new.

*Collaboration is potentially extendable to other devices JET ...

NSTX BAAEs, f=103kHz

- NSTX 115731
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Rotation, kinetic effect are to be studied.

Potentially diagnostic tool for plasma pressure, q, Ti...
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Affect phase space EP distribution to change instability dynamics

0 Example: angelfish corresponds to EP coherent structures and is affected by RF.
O Engineering of fast-ion phase space can suppress deleterious instabilities.
0 Potentially important tool for EP instability studies.
Q Interaction with Wave/particle group is essential
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Possible studies may include:

How RF can effect EP transport: in r vs. in v.

HYM should provide insight into nonlinear EP effects on CAE/GAEs.
Stochastic effects has to be studied.
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Energy/alpha channelling. 7



Bounce resonance fishbone and hole-
clump pair mode unique to NSTX
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