

Macroscopic Stability Research for 2009-13

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

v1.9

Steven A. Sabbagh

Columbia University For the NSTX Research Team

NSTX 5 Year Plan Review for 2009-13 Princeton Plasma Physics Laboratory July 28-30, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep U Quebec

Understanding what profiles and control systems are needed for burning plasmas must occur before such devices

- FESAC US ST mission:
 - Develop compact, high β , burning plasma capability for fusion energy

<u>CTF</u>: $\beta_N = 3.8 - 5.9 \quad (W_L = 1-2 MW/m^2)$ <u>ST-DEMO</u>: $\beta_N \sim 7.5$

- Both at, or above ideal no-wall β -limit; deleterious effects at ~ $\frac{1}{2} \beta_N^{no-wall}$
- high β_N accelerates neutron fluence goal takes 20 years at $W_L = 1 \text{ MW/m}^2$)
- Stability Goal (in one sentence)
 - Demonstrate reliable maintenance of high β_N with sufficient physics understanding to extrapolate to next-step devices
- Knowledge base needed to bridge to these devices
 - <u>Demonstration = Control</u> (of modes and plasma profiles):
 - Need to determine what control is needed before CTF (for greatest simplicity)
 - <u>Understanding = Vary parameters (+operate closer to burning plasma levels)</u>:
 - Collisionality: influences V_d damping
 - Shaping:
 - Plasma rotation level, profile:
 - <u>q level, profile</u>:

All influence β-limiting modes: Kink/ballooning, RWM, NTM

Advanced tokamak operation demonstrated in a mega-Ampere class spherical torus

- High β operational space
 - Ultra-high β_t = 39%, near unity in core
 - Broad current and pressure profiles
 - $-\beta_N > 7, \beta_N / l_i > 11$
 - Wall-stabilized, $\beta_N / \beta_N^{no-wall} >$ 50% at highest β_N
- Future research moves to develop predictive capability and control for steady-state operation near with-wall β limit
 - Extrapolate to next step device with high confidence

S.A. Sabbagh, et al., *Nucl. Fusion* **46**, 635 (2006).

Development of device hardware empowers fundamental stability understanding for robust extrapolation to next-step STs

- Operate at parameters closer to burning plasma (e.g. low v_i)
 - High plasma shaping ($\kappa \sim 3$), low l_i operation
 - Vertical stability, kink/ballooning stability, coupling to passive stabilizers
 - Resistive wall mode (RWM) stabilization
 - Understand physics of passive mode stabilization vs. V_{ϕ} at reduced v_i
 - Non-axisymmetric field-induced viscosity
 - Non-resonant and resonant, due to 3-D fields and modes at reduced v_i
- Control modes and profiles, understand key physics
 - Dynamic error field correction (DEFC)
 - Demonstrate sustained V_{ϕ} with reduced resonant field amplification, under V_{ϕ} profile control
 - Resistive wall mode control
 - Increase reliability of active control, investigate multi-mode RWM physics under V_{ϕ} , q control
 - Tearing mode / NTM
 - Stabilization physics at low A, mode locking physics under V_{ϕ} , q control
 - Plasma rotation control
 - Sources (2nd NBI, magnetic spin-up) and sink (non-resonant magnetic braking)
 - Mode-induced disruption physics and prediction/avoidance

- 2nd NBI (incr.)
- Singly-powered RWM control coils
- coil upgrade (incr.)

Plasma equilibrium goal to access and maintain stable high β_N at high shaping

D.A. Gates, et al., Nucl. Fusion 47, 1376 (2007).

Dynamic Error Field Correction used to increase pulse length

- Apply preprogrammed n = 1 fields
- Adjust feedback gain, phase, so that feedback cancels those currents
- then remove n=1 EF source to correct intrinsic error fields

- Pre-programmed n = 3 fields, two phases
- Asymmetric response in rotation, pulse length
 - n = 3 intrinsic error field present (PF5, TF most likely causes)
- n = 2 error fields found to be less important

Goal to make resonant and non-resonant DEFC effective over large range of plasma conditions

- FY2009-10
 - Optimize DEFC control with expanded sensor arrays
 - Plasma response using IPEC
 - Test real-time n=3 correction $(\propto I_{PF5})$
 - Develop tensor-pressure equilibria with IPEC
- FY2011-2012
 - Modify IPEC to allow magnetic islands. Compare to experiments involving interaction of 3-D applied fields and NTMs.
- FY2012-2013
 - Study EF thresholds at $B_T < 1T$, assess intrinsic error fields at higher B_T , I_p
 - Utilize 2nd SPA power supply for greater DEFC spectrum flexibility
 - Utilizing upgraded RWM coil geometry and IPEC modeling, optimize DEFC poloidal mode spectrum for best V_{ϕ} . Implement appropriate control system upgrades as required.

Ideal Perturbed Equilibrium Code (IPEC)

Active RWM control and error field correction maintain high β_N plasma

- NSTX record pulse lengths
 - Up to 1.8s (shown previously)
- n = 1 active control
 - Upper/lower B_p sensors
 - Favorable B, feedback settings found in 2008
 - Fast response ~ 1 ms
- n = 3 DC field correction
 - best maintains ω_{ϕ}
 - but RWMs observed w/o feedback at high ω_{ϕ}
- n = 1 feedback now being used as tool in many XPs
 - > 200 shots in 2008 with active feedback in 10 XPs
- Present goal to increase reliability, performance
 - Feedback success ~ 74%
 - RWM more likely when NTM stabilized (e.g. by lithium)
 - Poloidal deformation of mode
 - Considering system upgrades

VALEN code reproduces experimental RWM feedback performance

Design work for upgraded non-axisymmetric control capabilities has begun

Significant progress planned for RWM control research (i) Active feedback control

- Plan summary 2009-2011
 - Continue use of RWM feedback control as standard tool build performance statistics
 - Investigate underlying active control physics
 - Continue feedback control parameter optimizations/analysis, using all RWM sensors
 - Determine effectiveness over range of V_{ϕ} profiles and levels, v_i level
 - Test advanced state-space active stabilization algorithms offline; implement and perform initial tests for RWM control
 - Determine the role of plasma response during RWM control using IPEC
 - Investigate multiple modes in stabilization, implement methods of decreasing possibility of RWM poloidal deformation
 - Multi-mode VALEN code completed (running NSTX, DIII-D, HBT-EP tests now)
 - Design high-*n* control coil (NCC); determine need for passive plate modifications
- Plan summary 2012-2013
 - Assess RWM control at reduced v_i with center stack upgrade; during V_b profile control
 - Analyze initial non-magnetic (SXR) RWM sensor data
 - compare to magnetic sensors; evaluate future use in RWM feedback
 - Implement 2nd switching power amplifier (SPA) to allow independent control of all 6 midplane RWM coils
 - Implement NCC and begin to use for RWM stabilization; n > 1 RWM, multi-mode study during n = 1 stabilization; compare to theory (incremental)
 - Examine greater range of V, and q profiles with 2nd NBI, greater non-resonant braking flexibility using 2nd SPA; NCC (incremental)

Non-resonant magnetic braking allows V_{ϕ} modification to probe RWM "critical rotation" and stabilization physics

- Scalar plasma rotation at q = 2 inadequate to describe stability Ω_{crit} doesn't follow simple $\omega_0/2$ rotation bifurcation relation Marginal stability $\beta_N > \beta_N^{\text{no-wall}}, \omega_{\phi}^{q=2} = 0$ A.C. Sontag, et al., NF 47 (2007) 1005. 30 1.0 124010 0.605 |sec 4 0.8 20 Ω_{crit}/ω_0 $ω_{\phi}/2\pi$ (kHz) 0.6 3 $\Omega_{\rm crit} = \omega_0/2$ q 10 0.4 $(\omega_0 = \text{steady-state plasma rotation})$ 0.2 0 q = 20.0 2.0 1.6 1.2 2.4-10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 R (m)
- Slowest rotation profiles produced in NSTX are at DIII-D balanced-NBI levels
- Ion collisionality profile variation appears to alter experimental Ω_{crit} profile

Kinetic modification of ideal MHD stability theory investigated to explain experiment

- Ideal MHD RWM growth rate formulation
- Kinetic modifications
 - Trapped and circulating ions
 - Trapped electrons
 - Alfven dissipation at rational surfaces
- Stability depends on
 - Integrated $\underline{\Omega}_{\mu}$ profile: resonances in δW_{κ} (e.g. ion precession, diamag. drift)
 - Particle <u>collisionality</u>

$$\gamma \tau_{_W} = -\frac{\delta W_{_\infty} + \delta W_{_K}}{\delta W_{_b} + \delta W_{_K}}$$

Hu and Betti, Phys. Rev. Lett **93**, 105002 (2004).

$$\begin{aligned}
\Omega_{\underline{\phi}} \text{ profile (enters through ExB frequency)} \\
\underline{\text{Trapped ion component of } \delta W_{K}(\text{plasma integral})}_{\delta W_{K}^{ti}} = \int_{0}^{\Psi_{a}} d\Psi\left(\frac{p_{s}}{1+\frac{T_{e}}{T_{i}}}\right) \left(2\sqrt{\pi}\frac{r}{\upsilon}\right) \sum_{l=-\infty}^{\infty} \int_{B_{0}/B_{max}}^{B_{0}/B_{min}} d\Lambda\left(\frac{\hat{\tau}_{b}}{2}\right) & \leftarrow \text{Pitch angle integral} \\
\times \int_{0}^{\infty} \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_{E} - \omega}{(\omega_{D}) + l\omega_{b} - i\nu_{\text{eff}} + \omega_{E} - \omega}\right] \hat{\varepsilon}^{5/2} e^{-\hat{\varepsilon}} d\hat{\varepsilon} & \leftarrow \text{Energy integral} \\
\times \left|\left\langle \left(2 - 3\frac{\Lambda}{B_{0}/B}\right)(\kappa \cdot \xi_{\perp}) - \left(\frac{\Lambda}{B_{0}/B}\right)(\nabla \cdot \xi_{\perp})\right\rangle\right|^{2} & \leftarrow \text{Mode geometry}
\end{aligned}$$

Kinetic modifications show RWM unstable region at relatively high V₆ - in agreement with experiment

- Marginal stability crossed at relatively high V_{ϕ}
 - in experiment and theory
 - far greater than thought needed for robust stability in terms of ω_A at q = 2

Kinetic stability model shows increase in stability as ion collisionality decreases – under investigation

- Opposite to results of models using only viscous dissipation
- Determine best theory model by comparing to recent experiments with Li evaporation; further reduced v_i with upgraded center stack

Significant progress planned for RWM stabilization research (ii) Passive stabilization physics

- Plan summary 2009-2011
 - Determine RWM stabilization requirements for broader range of V_{ϕ} profiles and v_i allowed by lithium evaporation, liquid lithium divertor
 - Test stability theories against marginal V_{ϕ} profile database, new parameter scans (2009 milestone)
 - Continue analysis using kinetic δW Hu-Betti-Manickam code
 - Compare to latest MARS-K implementation (full kinetic effects modeled Y. Liu)
 - Determine/implement stabilization improvements by altering passive plate electrical reconnections
- Plan summary 2012-2013
 - Examine passive stabilization in low v_i plasmas created at higher T_i from higher B_t and I_p
 - Examine RWM stabilization during V_{ϕ} profile feedback control
 - Determine a reliable physics model to confidently predict RWM stabilization as a function of rotation and ion collisionality
 - Test stabilization physics model for greater range of V_{\u03c0} profiles with 2nd NBI, greater non-resonant braking flexibility using 2nd SPA unit; with new NCC (incremental)

Recent experiments and analysis have studied NTM stabilization physics of high- β NSTX plasmas

- Trend confirms physics of polarization current model
- Expand to additional machines (JET, AUG), and achieve more cases

Collaboration between R.J. La Haye (GA), S. P. Gerhardt (PPPL), R. Buttery (JET), and M. Marschek (AUG)

- Flow shear variation achieved by different NB injection and n = 3 braking.
- Similar trends observed in co-/counter mix experiments in DIII-D
- Trend likely due to dependence of Δ' on local flow shear

Establish predictive physics understanding of NTMs

- 2009-2011: Compete Characterization of NTM Onset, Small Island Physics, Restabilization
 - Characterize the role of V_{ϕ} and the ideal kink limit on NTM onset thresholds
 - Characterize triggering events, including sawtooth triggered 3/2 modes and "triggerless" NTMs with $q_{min} > 1$
 - Finish characterization of the marginal island width for 2/1 and 3/2 modes, including comparisons to conventional aspect ratio devices
 - Understand details of how Li conditioning and DEFC assist in stabilizing 2/1 modes
- 2009-2011: Establish a program of relevant NTM modeling
 - Implement PEST-III calculations of Δ ' for realistic NSTX equilibria, including the effects of nearby rational surfaces
 - Utilize initial value codes like NIMROD for more sophisticated treatment of transport near the island or rotation shear effects on mode coupling and island eigenfunction.
- 2012-2013: Develop scenarios that mitigate/eliminate deleterious NTM activity
 - Quantify the benefits of $q_{min} > 2$ operation, and the role of higher order (3/1, 5/2) modes in this case
 - Utilize increased toroidal field (new center stack) to scale $\rho_{\theta i}$ in single device
 - Utilize 2nd beamline for current profile control, possibly allowing Δ' stabilization of NTMs even with q_{min} < 2

Collaborations are an essential element of research plan (GA, AUG, JET, U. of Tulsa,...)

Non-axisymmetric field-induced neoclassical toroidal viscosity (NTV) important for low collisionality ST-CTF, low rotation ITER plasmas

- Significant interest in plasma viscosity by non-axisymmetric fields
 - Physics understanding needed to minimize rotation damping from ELM mitigation fields, modes (ITER, etc.)
 - NTV investigations on DIII-D, JET, C-MOD, MAST, etc. following quantitative agreement on NSTX
- Expand present studies on NSTX
 - Examine larger field spectrum
 - Improve inclusion of plasma response using IPEC
 - Consider expansions of NTV theory
 - Saturation due to E, at reduced ion collisionality, multiple trapping states, matching theory through collisionality regimes
 - Examine NTV from magnetic islands
 - Stronger dependence on $\delta B/B$
 - Compare to kinetic modeling (e.g. using GTC-Neo upgrade (W. Wang))

<u>Measured $d(I\Omega_p)/dt$ profile and theoretical</u> <u>NTV torque (*n* = 3 field) in NSTX)</u>

W. Zhu, et al., *Phys. Rev. Lett.* **96**, 225002 (2006).

Dominant NTV Force for NSTX collisionality...

$$\left\langle \stackrel{\wedge}{\boldsymbol{\mathcal{C}}}_{t} \bullet \stackrel{\rightarrow}{\nabla} \bullet \stackrel{\leftrightarrow}{\Pi} \right\rangle_{(1/\nu)} = B_{t} R \left\langle \frac{1}{B_{t}} \right\rangle \left\langle \frac{1}{R^{2}} \right\rangle \frac{\lambda_{1i} p_{i}}{\pi^{3/2} \nu_{i}} \varepsilon^{\frac{3}{2}} (\Omega_{\phi} - \Omega_{NC}) I_{\lambda}$$

<u>...expected to saturate at lower v_i </u>

$$\frac{1}{\nu_i} \Longrightarrow \frac{\nu_i}{\left(\nu_i^2 + \omega_E^2\right)}$$

Can verify at order of magnitude lower v_i with center stack upgrade

Clear non-resonant braking observed in recent n = 2 applied field experiments – broader braking profile at lower n

- n = 2 configuration has strong n = 4, but essentially no (resonant) n = 1 component
- Recent experiment shows stronger braking with Li evaporation

Develop understanding of field-induced plasma viscosity with application to V_b profile control

• Plan summary 2009-2011

- Continue testing viscosity theory from resonant /non-resonant fields
 - Examine key dependences; alter v_i using lithium evaporation, LLD
 - joint experiments with other devices (MAST 2008)
 - Improved plasma internal field response using IPEC; influence of magnetic islands
- Expand analysis to further test theory
 - Saturation due to E_r at reduced v_p multiple trapping states, etc.
 - Time-evolved kinetic computations using GTC-Neo; examine saturation at low v_i
- Determine range of radial placement of torque possible with NCC design
- Begin real-time V_{ϕ} control using CHERS measurements, present NBI as source and *n*=3 NTV as sink of plasma toroidal momentum
 - Examine effect on modes; initial control of flow shear near for NTM studies
- Plan summary 2012-2013
 - Utilize reduced v_i plasmas using new center stack to controllably access 1/v and lower collisionality regimes of NTV theory
 - Use 2^{nd} beam line to vary torque profile at fixed power; include in real-time V_{ϕ} control
 - Apply greater variation of radial profile of braking torque (for V_{ϕ} control; test theory)
 - Use 2nd SPA power supply unit; add NCC when available ($n \le 6$) (incremental)
 - Consider momentum <u>input</u> with NCC via non-resonant NTV (proposal)

NSTX Disruption Studies Contribute to ITER, Aim to Predict Disruption Characteristics & Onset For Future Large STs

- Fastest NSTX disruption quench times of 0.4 ms/m², compared to ITER recommended minimum of 1.7 msec/m².
- Reduced inductance at high-κ, low-A explains difference

 $\frac{\tau_{L/R}}{S} = \frac{\mu_0}{2\pi\eta} \left[\ln\left(\frac{8}{\sqrt{\kappa\varepsilon}}\right) - \frac{7}{4} \right]$

- New instrumentation in 2008 yields significant upward revision of halo current fractions (now up to 20%)
 - reveals scaling with I_P and B_T .
 - Mitigating effect: Largest currents for deliberate VDEs
- Toroidal peaking reduced at large halo current fraction.

Expand these Results For a Complete Characterization of Disruption Dynamics, Including Prediction Methods.

Understand the Causes and Consequencs of Disruptions for Next-step STs and ITER

- 2009-2012: Complete halo current characterization
 - Install arrays of instrumented tiles in outboard divertor, measure currents into LLD trays (2009-10)
 - Utilize CS upgrade to instrument inboard divertor tiles (2011)
 - Understand the halo current paths, toroidal peaking physics, and driving mechanisms, in order to make predicitons for future ST plasmas
- 2009-2011: Complete thermal quench characterization
 - Determine the fraction of stored energy lost in the thermal quench, compared to that in the pre-disruption phase, over a variety or plasmas and disruptions
 - Utilize fast IR thermography to understand time-scale and spatial distribution of the thermal quench heat flux
 - Predict the impulsive heat loading constraints on future ST PFCs
- 2010-2013: Learn to predict and prevent disruptions
 - Develop real-time diagnostics useful for predicting impending disruptions for relevant ST equilibria and instabilities
 - Test predictive algorithms, to determine the simplest, most robust prediction methods
 - Use in conjunction with stability models and mode control systems developed

Experiments in 2008 part of continuing contribution to ITER high priority MHD research

- ELM Mitigation
 - Attempted ELM mitigation with non-axisymmetric field from single row of midplane coils
 - Several field configs. with Chirikov parameter > 1
 - ELM frequency/duration changed, not fully mitigated
 - ELMs mitigated by Li evaporation / triggered by applied field
- Neoclassical Toroidal Viscosity (NTV) Study
 - Following quantitative agreement on NSTX to best determine impact of non-axisymmetric fields from RMP fields on ITER V_{ϕ}
 - Braking with *n* = even fields confirm non-resonant effect
 - Stronger NTV damping with Li evaporation (v_i , or T_i variation?)
- RWM stabilization

0DNSTX

- Active feedback system latency artificially increased to simulate the effect of greater time delays due to ITER blanket
- Experiment to simulate impartial toroidal coverage of control coils
 - Feedback failed for several phase settings (physics reason TBD)

ITER support experiments/analysis to continue in 2009-13

Suggested by

USBPO,

ITFR

Org.

VALEN RWM control models validated on NSTX predict significant β_N increase with proposed ITER internal coil

- 3 toroidal arrays, 9 coils each
- ELM, VS, RWM applications
 - Endorsed by ITER STAC
- Configuration similar to proposed NCC coil upgrade for NSTX

Macroscopic Stability Research 2009-13 (S.A. Sabbagh)

U.S. leads the world in high β ST research and is in position to bridge the gap to next-step STs

- Macroscopic stability research direction
 - Transition from establishing high beta operation to reliably and predictably sustaining and controlling it – required for next step device
- Research provides critical understanding for tokamaks
 - Stability physics understanding applicable to tokamaks including ITER, leveraged by unique low-A, and high β operational regime
 - Specific ITER support tasks

• NSTX provides access to best diagnosed high beta plasmas

- <u>2009-2011</u>: allows significant advances in scientific understanding of ST physics toward next-steps, supports ITER, and advances fundamental science
- <u>2012-2013</u>: allows demonstration/understanding of reliable stabilization/profile control at lower collisionality – performance basis for next-step STs

Macroscopic Stability Research Timeline (2008-2013)

