

Supported by



College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

## **Research Plan for Transport and Turbulence Physics in NSTX**

## S.M. Kaye, PPPL

For the NSTX Research Team

NSTX 5 Year Plan Review for 2009-13 Conference Room LSB-B318 Princeton Plasma Physics Lab July 28-30, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

## NSTX Will Address T&T Issues Critical for Predicting Performance in Future Devices

- What do we need to know in order to move on to the next step for STs?
  - Confinement scaling at low aspect ratio
    - In low recycling regime and at higher  $B_{T}$  and  $I_{p}$
  - Study full turbulence k-spectrum to determine sources of anomalous transport
  - Understand energy, momentum and particle transport and their coupling
  - Develop prediction for L-H threshold power at high  $B_T$ ,  $I_p$ , low  $n_e$ , high  $P_{rad}$
- NSTX is unique in its ability to address critical transport issues!
  - Strong rotational shear that can influence ion and electron transport
  - Anomalous electron transport can be isolated: ions often close to neoclassical
  - Large range of  $\beta_T$  spanning e-s to e-m turbulence regimes: assess impact of electromagnetic contribution to transport
  - Localized measurements of electron-scale turbulence ( $\rho_e \sim 0.1 \text{ mm}$ )
  - Ultimately develop predictive understanding in order to project to future devices with confidence
    - Results from a wide range of operating space (higher  $B_T$ ,  $I_p$ , lower  $v^*$ ) is critical to validating physics models
  - Includes lower v\* ST and non-ST (e.g., ITER)



## Strong Coupling of Experiment to Theory Aids in Developing Predictive Understanding



#### NSTX operating regimes will yield results that will test and extend theory – higher confidence in predictions also at higher aspect ratio

- Validation of theory and models at all levels
- Synthetic diagnostics in gyro-kinetic codes
- Fluctuation spectra, mode structure
- Transport fluxes,  $\chi$ 's, D's

Ultimate goal: Fundamental Understanding - Predictive Tool



## Outline

- Global studies
- Ion transport
- Electron transport
- Momentum transport
- Particle transport
- Summary





#### Global Studies Reveal Parametric Dependences That Differ From Those at Higher Aspect Ratio



#### Strong dependence on v\*



- Experiments have shown importance of edge stability in determining the parametric dependence of  $\tau_E$  on  $\beta$  (ITPA)
- L-H threshold experiments have revealed an apparent I<sub>p</sub> dependence



Upgraded center stack will give an additional factor of 2 range in  $B_T$ ,  $I_p$ , factor of up to 10 reduction in  $v^*$ 



## A Significant Improvement in Global Confinement Is Observed With Lithium Evaporation



Developing an understanding of underlying physics (energy transport, edge stability, impurity evolution)



## Global Studies Are Important for Being Able to Scale to Future Devices (ST and ITER)

Are differences in parametric scalings due to low R/a or operation in present  $B_T$ ,  $I_p$ ,  $v^*$  range?

#### • 2009-2011

- Establish effect of lower collisionality (LLD) on global confinement
  - Key component of global **and** local studies
- Dependence of  $\tau_{E}$  on R/a for optimizing future ST designs
  - Within NSTX and through NSTX/DIII-D similarity experiment (TP-9)
- Identify source of variation in  $\beta$ -degradation of confinement (CDB-2)
  - ELM suppression in lower  $\kappa, \delta$  plasmas using Lithium conditioning
- Characterize L-H threshold ( $I_p$ ,  $B_T$ , species, shape)
  - Effect of rotation (n=3 braking, HHFW)
- **2012-2013:** Center stack upgrade will yield factor of two increase in each of  $B_T$ ,  $I_p$ , factor of 10 reduction in  $v^*$ 
  - Assess  $B_T$ ,  $I_p$  and  $v^*$  dependences in expanded operating space
  - Characterize L-H threshold (H-mode access, confinement quality)
  - Evaluate role of X-point in determining P<sub>L-H</sub>
  - Verify scaling trends at high  $P_{heat}$  ( $\leq 12 \text{ MW}$ ) incremental



#### Ion Transport Typically Found to be Near Neoclassical in H-mode Plasmas

Controls  $\tau_E$  scaling with  $I_p$ 

**BES** range

Linear GS2 calculations indicate possible suppression of low-k turbulence by ExB shear during H-phase

- Supported by non-linear GTC results



Neoclassical levels determined from GTC-Neo: includes finite banana width effects (non-local)

Need BES to confirm conclusions

 $\chi_i$  routinely anomalous in high density L-modes ( $\gamma_{\text{lin, ITB}} > \gamma_{\text{ExB}}$ )

kθρs



100

100

## Should Neoclassical Ion Transport Be Expected in Future STs?

- **2009-2011** 
  - Actively change ITG/TEM driving/damping terms (T\_e/T\_i, ExB shear, collisionality) using NBI, HHFW and magnetic braking
  - Relation of low-k turbulence (BES) measurements to transport
    - Preliminary validation of neoclassical and low-k turbulent transport theories
  - Ion internal transport barrier studies: relation to current profile, integer q, ExB shear
  - Validation of orbit shrinking/squeezing theory ( $L_{Ti} \sim \rho_i$  near edge in some cases)
- **2012-2013**:  $\chi_{i,neo}$  in NSTX-U estimated to be factor of 10 lower than in NSTX with low  $\chi_{i,neo}$ , will turbulent transport be dominant?
  - Assessment of ion transport and turbulence levels at high  $B_T$ ,  $I_p$ ,  $P_{heat}$ , lower  $v^*$ , and for various input torques, q-profiles
  - Detailed comparison of inferred  $\chi_i$  and measured low-k fluctuation spectra to gyrokinetic predictions:
    - Assessment of non-local transport due to large  $\rho^\ast$
    - Zonal Flow dynamics in edge and core (test theoretical q-dependence)
    - Assess applicability of neoclassical vs low-k turbulent transport
  - Comparison to neoclassical theory with multi-ion species and full Larmor radius effects

Develop a predictive understanding of the transition between neoclassical and turbulent ion transport



9

#### **NSTX Has Unique Plasma Conditions to Study Electron Turbulence and Critical Gradient Physics**



July 28, 2008

10

#### Electron Transport Correlates with High-k Turbulence (ETG-range) in Many Plasma Regimes



🔘 NSTX

NSTX 2009-13 5 year Plan – T&T (Kaye)

## Electron Transport May be Controlled by Multiple Mechanisms (Including E-M)

Heat flux due to high-k electron modes (ETG) consistent with levels inferred from TRANSP in H-modes for r/a>0.5



Computation Time (arb. units)

## Collisionality predicted to be low enough in NSTX-U for suppression of microtearing

Low-k microtearing important in low shear/"Hybrid" discharges Driven by ⊽T, damped by strongly reversed magnetic shear





## Recent Observations Indicate High-Frequency Core E-M Fluctuations May Also Cause Electron Transport





NSTX 2009-13 5 year Plan – T&T (Kaye)

## What are the Root Causes of Electron Transport and Under What Conditions?

#### • 2009-2011

- Investigate TEM/ETG using present high-k<sub>r</sub> system
  - Test collisionality dependence of TEM/ETG transport (HHFW, Lithium conditioning)
  - Establish critical gradient using HHFW to change R/L<sub>Te</sub>: compare with results of linear gyrokinetic calculations to ID responsible mode
  - Effect of ExB suppression on high-k modes
  - Turbulence spreading
- Perturbative electron transport using ELMs and impurity pellets
  - Relation to high-k turbulence and critical gradients
- Role of reversed magnetic shear, low order rational q for eITB formation (MSE-LIF)
- Microtearing mode investigation using internal  $\delta B$  measurements with MSE, polarimetry
  - Scope out sensitivity requirements during 2009 (sensitivity to a few Gauss is necessary)
  - Change driving/damping terms:  $\beta$ ,  $\nu^*$ ,  $\nabla T$ , q', ExB shear
- Measure full range of medium-to-high  $k_r$ ,  $k_{\theta}$  turbulence
  - Unique with respect to spatial resolution
  - Mode structure, full frequency spectra, dispersion characteristics
  - Radial streamer identification
- Validate physics models using gyrokinetic calculations
  - Coupled to GTS-SciDAC project



#### NSTX Upgrades in 2012-2013 Enable Key Physics Tests

- Can make tests of TEM/ETG modes by eliminating:
  - Microtearing by operating at higher  $B_T$ ,  $I_p$ , lower  $v^*$
  - GAE modes by reduced fast ion drive (operation at higher  $B_T$ )

#### • **2012 – 2013**

- New center stack provides higher  $B_T$ ,  $I_p$ , lower  $v^*$
- Microtearing mode investigations with internal  $\delta B$ , full low-k for mode structure in NBI and non-NBI plasmas
- EBW for local modification of electron transport and turbulence
  - Assess turbulence spreading with full low and high-k fluctuation measurements
- Modulated EBW to probe local critical gradient physics (incremental)
- Verify transport trends at high P<sub>heat</sub>, varying input torque with 2<sup>nd</sup> NBI (incremental)

Would look forward to an NSTX/C-Mod/DIII-D collaboration on high-k turbulence and its relation to electron transport



## What is the Source of Momentum Transport, and How Does it Couple to Energy Transport?

- Theory gives  $v_{pinch}/\chi_{\phi}$  based on low-k turbulence In NSTX,  $\chi_{\phi}^{ss} > \chi_{i}$ , >>  $\chi_{e}$ • (TP-6.3) Good agreement with expt Perturbative momentum transport • studies using magnetic braking Theoretical Toroidal Pinch Velocity (m/s) Peeters -10- Hahm indicate significant inward pinch -20 -30 Momentum Diffusivity (m<sup>2</sup>/s) -40 -50 Fit with finite v<sub>d. pinch</sub> 3 -60 -50 -40 -30 -20 -10 0 -60 2 Fit with v<sub>o. pinch<sup>a</sup></sub> Experimental Toroidal Pinch Velocity (m/s)  $\Gamma_{i,turb} < \Gamma_{i,neo}$  while  $\Gamma_{\phi,turb} > \Gamma_{\phi,neo}$ Toroidal Pinch Velocity (m/s) GTC-Nec 10 Diffusivity (m<sup>2</sup>/s) Momentum transport may be -5 -10 the best probe of low-k -15 turbulence -20 0.6 0.8 0.2 0.4 1.0 0.0 Normalized Minor Radius 0.1 0.3 0.5 0.7 0.9 r/a



## Will Rotation/Rotation Shear be High Enough in Future Devices to Suppress Turbulence?

NSTX can explore momentum transport by varying input torque using magnetic braking and NBI

TP-6.3

#### • **2009 – 2011**

- Test neoclassical theory using  $v_{\theta}$  measurements
- Effect of rotation on plasma confinement (continuation of FY08 Joule milestone work)
  - Relation of  $\Gamma_{\phi}$  to  $\Gamma_{i,e}$
- Determine  $v_{\text{pinch}},\,\chi_{\phi}$  with varying input torque
  - Tests of inward pinch, NTV theories
- Comparisons with low-k turbulence measurements
- 2012-2013: Does relation between  $\chi_i/\chi_{\phi}$ ,  $\chi_e/\chi_{\phi}$  change at higher  $B_T$ ,  $I_p$ , lower  $v^*$ ?
  - Study momentum confinement in expanded operating space
    - $\chi_{i,neo}$  (NSTX-U) ~ 0.1  $\chi_{i,neo}$  (NSTX)
  - Zonal flows/GAMs and relation to other microinstabilities
  - Further  $v_{pinch}$ ,  $\chi_{\phi}$  assessment with off-midplane control coils, 2<sup>nd</sup> NBI (incremental)



## Low Recycling Edge Could Have Significant Impact in Future Devices

- 2009 2011
  - D & particle transport in NBI-fueling dominated core
    - In conjunction with energy & momentum transport
  - Impurity transport using gas puffing, TESPEL
    - Previous experiments/modeling indicate neoclassical transport level for injected Neon in H-mode
  - Effect of low n, recycling due to Lithium on ne(r), particle transport

#### • **2012 – 2013**

- Study core particle transport at lower  $\nu^\ast$
- D & particle transport in outer region: requires extended modeling for determining S(r)
- Helium transport studies using He puffing or He discharges
- Determine role of low-k turbulence in controlling particle transport
- Perturbative particle transport studies with 2<sup>nd</sup> NBI (incremental)





## Facility and Diagnostic Upgrades Will Aid In Achieving T&T Goals

#### Facility

Higher  $B_T$ ,  $I_p$ : New center stack

Higher power/Current profile control: 2nd Neutral Beam, EBW 2

2009-2011 2012-2013 Incremental

#### **Diagnostics**

Collisionality control: Lithium plasma facing components (LITER, LLD) Heating profile measurements for power balance: FIDA, neutron collimator

Rotation measurements: poloidal CHERS

Perturbative energy transport: High resolution edge and core SXR

Fluctuations: internal  $\delta$ B using MSE &/or polarimetry, BES, microwave scattering upgrade to measure high k<sub>0</sub> in addition to high k<sub>r</sub>, Doppler reflectometry (edge)

Profiles: MSE-LIF, X-point reciprocating probe, MPTS upgrade

Magnetic braking to change ExB shear: Internal non-axisymmetric control coils



## Full Complement of Turbulence Measurements Will Cover a Wide k-Range



Unique set of turbulence diagnostics in terms of spatial resolution across full k-range (2010+)



#### The NSTX Five year Program Will Provide Physics Basis for Higher-Confidence Performance Predications for Future Devices (ST and non-ST)

- The NSTX program will address the most critical physics issues for future devices
  - Global studies of confinement and L-H threshold power
  - Relation of ion and electron transport to turbulence
  - Momentum transport as a probe of low-k turbulence
  - Particle transport studies
- The Five Year Program will benefit from facility and diagnostic upgrades, additional operation and more mature physics analysis
  - BES implemented by 2009-2010, high- $k_{\theta}$  implemented by 2010
  - High  $B_T$ ,  $I_p$ , lower  $v^*$  capability in 2012
  - Off-midplane control coils, 2<sup>nd</sup> NBI, EBW (incremental)
- Further theory/modeling development, including gyrokinetic codes with implementation of synthetic diagnostics, neoclassical theory with multi-species and full Larmor radius effects, predictive transport codes (pTRANSP) and models (e.g., TGLF)

#### Significant progress towards comprehensive predictive capability



# Transport and Turbulence Plans 2009-2013



