

Supported by

Energetic particle physics: progress and plans

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

E. D. Fredrickson, PPPL

For the NSTX Research Team NSTX 5 Year Plan Review for 2009-13 Conference Room LSB-B318, PPPL July 28-30, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep U Quebec

NSTX is uniquely positioned to study energetic particle physics required for next-step devices

- For ITER/future STs, we need the capability to predict:
 - Fast ion confinement; predict impact on ignition conditions
 - Fast ion redistribution; predict beam driven currents.
 - Future STs depend on up to 50% beam driven current.
 - Fast ion losses; predict PFC heat loading.
- NSTX routinely operates with super-Alfvénic fast ions.
 - Neutral beam energy at 60 100 kV, $1 < V_{fast}/V_{Alfvén} < 5$
 - Center stack upgrade extends ρ_{fast} , $V_{fast}/V_{Alfvén}$ toward future devices.
 - Neutral beam power up to 6 (12) MW, strong drive with high β_{fast}
 - Fast ion parameters relevant to ITER/future STs
 - Fast ion losses have been correlated with both TAE and EPMs.
 - Losses typically largest when multiple modes interact; the predicted loss mechanism for ITER.

Fast ion losses seen with TAE Avalanches, EPMs, of concern for future devices

100

n = 1

- Fast ion losses correlated with multi-mode period of Energetic Particle Mode (EPM).
- Not classic fishbones; multiple, independent modes, potentially an issue for future STs.

119624

Documentation of fast ion transport, code validation, highest priority goal for EP group

- Fast ion redistribution indicated by neutron drops and in ssNPA and NPA data.
- Lower energy ions (V_{fast}/V_{Alfven} > 1) seem most strongly affected.
 - Additional experiments needed for quantitative measurements, identification of fast ions involved.
- No lost fast ions seen on sFLIP detector;
 - However, bursts of H_{α} light are correlated with avalanches,
 - fast ions may be lost to another part of limiter/wall

Fast-Ion D-alpha (FIDA) measures confined ions

FIDA measures change in N, profile for TAE avalanche @ 282ms :

- Fast-ion profiles still centrally peaked after avalanche
- Good correlation between:
 - Drop of neutron rate and of fastion density from FIDA.
 - Losses and position of maximum spatial gradient of FIDA density profiles

· 2nd NB allows control of instability drive

NOVA simulates mode structure, compared to reflectometer measurements

 NOVA is a linear code, mode structure is scaled to measured amplitude for use in ORBIT code.

 Modeled eigenmode compared with "synthetic reflectometer diagnostic"

- Similar analysis is done for each of the detected modes.
- ORBIT is used to simulate fast ion redistribution with modeled and measured mode structure/amplitude.

ORBIT simulations of losses consistent with measurements

- Fast ion losses approximately consistent with neutron rate drop.
- Scaling of losses with mode amplitude are slightly non-linear.
- Multiple modes further enhance losses.

- ORBIT predicts fast ion losses over wide range of energies.
- Losses are larger for lower mode frequencies.
- Drive is stronger for lower energy ions?

ONSTX

NSTX 2009-13 5 year Plan – Energetic Particles (Fredrickson)

M3D-K self-consistently models multi-mode TAE

- Fast-ion resonances in single mode simulation show that resonances are overlapping.
- Multi-mode simulation shows larger perturbation of fast-ion distribution.

- Mode amplitude larger in multi-mode simulation (red).
- Individual modes saturate at lower amplitude.
- Simulation also reproduces frequency chirping.

Validating predictive capability for fast ion transport from TAE highest priority goal for 2009-2013

- 2009-2011
 - Effect on NBI current will be investigated during TAE avalanches with:
 - FIDA, vertically scanned NPA, ssNPA, neutron and sFLIP diagnostics.
 - Scaling of Avalanche onset threshold with $V_{fast}/V_{Alfvén}$, and q-profile variations.
 - Complete study of J(r) modification by super-Alfvénic ion driven modes
 - Avalanche studies in H-modes w/BES for internal structure
 - EPM effect on fast ions, measure internal mode structure
 - EPM scaling studies with q(0) and β scaling, precession drift reversal
 - EPM scaling studies with q(0) and β scaling, study precession drift reversal
 - Neutron collimator data as complementary fast-ion redistribution diagnostic for high density H-modes.
- 2012 2013
 - New center-stack; avalanche scaling for wider range of ρ^*_{fast} and $V_{fast}/V_{Alfvén}$.
 - First measurements of internal magnetic fluctuations for *AE modes?
 - Pitch-angle, radial fast ion profile studies with 2nd NB (incremental)

Spherical tokamak parameters in new regime; NSTX diagnostics can validate unique EP physics

- Low field, high β make Alfvén and Acoustic wave coupling stronger in STs
 - Coupling modifies EP modes seen in conventional aspect ratio tokamaks
 - Understanding new modes important to future STs
 - New physics, modes can be diagnostic of plasma parameters
- Unique diagnostic capabilities on NSTX facilitate code validation of new physics and regimes
 - TF field range on NSTX ranges from 3 kG to 1 T
 - NSTX MSE diagnostic provides q-profile measurements over this range.
 - Extensive diagnostics can directly measure coupling of modes offering unique opportunities for code validation.
 - Coupling to Kinetic Alfvén Wave (high-k scattering)
 - Coupling of rsAE and Geodesic Acoustic modes (GAM)
 - Coupling of TAE and rsAE
 - β-induced Alfvén Acoustic Eigenmode (BAAE)

rsAE in ST plasmas offer multiple opportunities for unique physics studies

- For higher β, f_{GAM}/f_{TAE} larger; rsAE eventually become stable
- Modes only seen at low to very low β (density) for low field NSTX operation; 1 T will expand range of density.
- BES, reflectometer and low field MSE measurements will be used to validate NOVA and M3D for:
 - Coupling of rsAE to TAE; GAM to rsAE
 - Coupling of global modes to Kinetic Alfvén Waves in continuum
- Losses during n = 3 frequency sweep seen on sFLIP diagnostic.
- NSTX rsAE studies will address mystery of fast ion redistribution on DIII-D.

rsAE, GAM offers multiple opportunities for "MHD Spectroscopy"

MSE measurements (at low field) confirm interpretation of modes as rsAE; data used to validate NOVA modeling of rsAE.

• Frequency minimums are at the GAM frequency

- Scaling studies of f_{GAM} measure γ of thermal, energetic plasma components.
- Sheared rotation affects stability, frequency; studied with non-resonant braking.
- Mode structure will be measured with BES, and reflectometers and higher field.

Coupling of Alfvén and Acoustic branches at high β introduce a new 'gap', modes; BAAE

- β-induced Alfvén-Acoustic modes (BAAE) exist in gap opened by coupling of the Alfvén and acoustic branches.
- Frequency sweep can be used for MHD spectroscopy, as with rsAE.
- Where Alfvén waves enter continuum, mode-convert to short wavelength Kinetic Alfvén Waves (KAW).
 - This is an important damping mechanism for many Alfvén waves, including TAE.
- Coupling to Kinetic Alfvén Waves detected with High-k scattering diagnostic;
 - KAW wavenumber spectrum, amplitude and locality can be measured.
 - Data will be valuable for validating gyrokinetic upgrade to M3D-K (GKM).

NSTX 2009-13 5 year Plan – Energetic Particles (Fredrickson)

Global and Compressional Alfvén Eigenmodes are ubiquitous in present NSTX plasmas, higher field should suppress

- GAE exhibit avalanche-like behavior.
 Slow growth of multiple modes, ending in large, multi-mode burst and quiescent period.
 Evidence that they have significant impact on fast ion distribution.
 Doppler-shifted cyclotron resonance would take mostly perpendicular energy; fast ions would end up better confined.
 Can be correlated with low frequency
- Trapped electron precession frequency resonant with CAE/GAE
 - Multi-mode interaction can cause electron transport (ORBIT simulations)
- External excitation of multiple modes could heat thermal ions
 - Stochastic heating predicted and experimentally observed.
- Diagnostic of fast-ion diffusivity in fast-ion distribution function

EPMs

Studies of Angelfish (hole-clumps) illuminate physics of fast ion phase space structures

 Efforts have continued to develop theoretical and experimental understanding of CAE/GAE hole-clumps.

Linear growth rate in good agreement with analytical estimates

- Suppression power threshold in qualitative agreement with predictions
- Understanding phase-space structures could lead to methods of TAE control

Validation of acoustic mode, kinetic Alfvén wave, GAM coupling in NOVA and M3D (GKM)

- 2009-2011
 - BAAE high-k scattering radial scan, mode structure (using BES)
 - rsAE induced fast ion redistribution
 - High-k scattering radial scan
 - scaling of $C_s(\beta_{fast}, \beta_e, \beta_i)$, $\omega_{GAM}(\beta')$ with GAM (rsAE)
 - Documentation of Angelfish, HHFW suppression study, HYM validation.
- 2012 2013
 - BAAE stability boundary studies vs. toroidal field
 - Scaling of ρ^* affect on TAE avalanches with larger field range.
 - Alfvén cascade mode structure in moderate density plasmas at 1 T, rsAE - TAE coupling
 - Extension of mode studies to very low β
- 2013 (incremental)
 - Fast ion pitch-angle, radial distribution studies of EP instabilities.

NSTX has comprehensive diagnostic set for energetic particle driven mode studies

- Diagnostics to measure mode structure:
 - High frequency Mirnov arrays; ≈ 10 MHz bandwidth
 - Multi-channel reflectometer array; internal mode structure/amplitude
 - Multiple view soft x-ray cameras (≈ 100 kHz bandwidth)
 - High-k scattering; Kinetic Alfvén Waves
 - Firetip 2MHz; internal mode amplitude/structure
 - BES; higher spatial resolution, mode structure at higher/lower density
 - Improved internal magnetic fluctuation diagnostic (μwave, MSE)
- Fast particle diagnostics:
 - Fast neutron rate monitors
 - Neutron collimator; spatial profiles of fastest ion populations
 - Scanning NPA; high energy resolution, vertical and radial scan
 - ssNPA; 5-channel midplane radial array
 - sFLIP; scintillator lost ion probe, energy/pitch angle resolved, high time resolution(PMT)
 - iFLIP; Faraday cup lost ion probes
 - FIDA; spatial profile, energy resolved

NSTX 2009-13 5 ye	ear Plan – Energetic	Particles ((Fredrickson)
-------------------	----------------------	-------------	---------------

Pre-2009 2009-2010 2011+

Experimental program strongly coupled to EP theory & modeling community

- Strong analytic and numerical modeling support
 - Strong connection between PPPL and UT theory groups
 - TRANSP; equilibrium and classical fast ion distributions
 - NOVA-k; linear mode structure/stability
 - HINST; local, fully kinetic, stability modeling
 - ORBIT; fast ion redistribution linear mode structure
 - M3D-k; linear/non-linear mode stability structure and evolution
 - M3D upgrade (GKM) will provide full FLR effects, .e.g., coupling to KAW.
 - HYM; non-linear shear and compressional Alfvén waves
 - TORIC and GTC/GYRO/GEM code adaptation to EP physics
- NSTX experiments address energetic particle physics issues important for developing predictive capability.
 - Non-linear, multi-mode transport (ITER/NHTX/ST-CTF)
 - Coupling to KAW at continuum (ITER/NHTX/ST-CTF)
 - Rotational shear effects on mode stability/structure (NHTX, ST-CTF)
 - Phase-space engineering; HHFW modification of fast ion profile

NSTX is uniquely positioned to develop a predictive capability for fast-ion transport for next-step STs

- Good progress has been made in benchmarking fast-ion redistribution simulations with NOVA and ORBIT for TAE avalanches.
- Understanding fast ion redistribution effects on NB current will guide design of future experiments, NHTX, ST-CTF or ITER.
- Upgrade of center-stack for 1T, 2MA operation would broaden NSTX fast ion parameters, towards lower ρ^* and ITER.
- Second Neutral Beam Line would allow pitch angle and fast ion density profile control experiments
 - Important parameters for TAE and TAE avalanche and EPM stability.
 - Profile potentially important for GAE and CAE stability as well.
- NSTX has substantial diagnostic capabilities which will be exploited over the next 5 year period.
 - New diagnostics (BES, neutron collimator, high-k scattering, magnetic fluctuations) will substantially expand physics which can be directly addressed with experiments.
- Uniquely positioned to study broader role of CAE/GAE
 - Electron transport, thermal ion heating (α -channeling)

2009-13 Energetic Particle Research Timeline

