

Supported by

HHFW and ECW/EBW Progress and Plans for 2009-13

G. Taylor, PPPL

For the NSTX Research Team

NSTX 5 Year Plan Review for 2009-13 Conference Room LSB-318, PPPL July 28-30, 2008

U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kvushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo **JAEA** Hebrew U loffe Inst **RRC Kurchatov** Inst TRINITI **KBSI** KAIST **POSTECH ASIPP** ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U** Quebec

Culham Sci Ctr

College W&M Colorado Sch Mines

Columbia U

Comp-X

General Atomics

INEL

Johns Hopkins U

LANL

LLNL

Lodestar

MIT

Nova Photonics

New York U

Old Dominion U

ORNL

PPPL

PSI

Princeton U

SNL

Think Tank, Inc.

UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

30 MHz HHFW & 28 GHz ECW/EBW Enable Non-Inductive Ramp-up, q(0) Control & Bulk Heating

Start-up/Ramp-up Requirements

- (1→2) 28 GHz ECH generates plasma for HHFW heating & CD
- (2) I_P overdrive using bootstrap & HHFW CD
- (2→3) HHFW generates sufficiently high I_P to absorb NBI
- (4) HHFW provides q(0) control & bulk heating

HHFW Progress & Plans

Recently Heated D, He Plasmas to 5 keV with 3.1 MW of k_{\parallel} = 14 m⁻¹ HHFW

HHFW Heated I_p = 250 kA H-Mode Plasma to $T_e(0) > 1$ keV & Generated 85% Bootstrap Fraction

Recently Measured Core HHFW Electron Heating in Deuterium NBI H-Mode Plasma

HHFW Provides Efficient & Controllable Heating & Core CD in H-Mode for Next-Step ST's & ITER

- Recent improved HHFW heating results from discovery of important role of surface waves in limiting coupling
- Significantly advanced HHFW heating & CD performance by increasing B_t(0) & using edge density control
- HHFW to provide 4 MW of auxiliary heating & q(0) control needed for fully non-inductive NSTX H-mode scenarios
- HHFW bootstrap current drive will also be important tool for non-inductive current overdrive during ramp-up

Heating Efficiency for $k_{\parallel} = -8 \text{ m}^{-1}$ Increased Substantially as B_{τ} Increased from 0.45 T to 0.55 T

- ΔW_e for $B_T = 0.55$ T is ~ twice value for 0.45 T over same time interval
- RF power deposition to electrons increases from ~ 22% to ~ 40% at higher B_T, total efficiency increases from ~ 44% to ~ 65%

Improved Heating at $k_{\parallel} = -8 \text{ m}^{-1} \text{ Not Due to Reduced}$ Parametric Decay Instability (PDI) Edge Heating

Edge ion heating as a measure of PDI losses

- Edge ion heating not increased significantly at higher B_T at k_{||} = 8 m⁻¹
- PDI edge heating similar at k_{\parallel} = 3 m⁻¹ and 8 m⁻¹, suggests surface wave losses and reduced core damping account for decrease in heating efficiency

Surface Fast Wave Propagation Explains Reduced HHFW Heating Efficiency at Lower k

- Propagation in NSTX close to wall at k_{||} = 8 m⁻¹, on wall at k_{||} = 3 m⁻¹
- Losses in surface higher for lower k_{||}
- Propagation angle relative to B much less than for low harmonic ICRF
- Higher B moves propagation onset away from antenna, improving heating

3D Codes Using Full Toroidal Spectrum to Include Surface Damping, Core Damping and CD Effects

AORSA $|E_{RF}|$ field amplitude for -90° antenna phase case with 101 n_{ϕ}

- Waves propagate around plasma axis in + B_₀ direction
- Wave fields very low near inner wall, strong first pass damping
- This case has only 60% coupling efficiency making it a good test case for theory
- SciDAC project extending codes to include edge loss mechanisms

First Motional Stark Effect (MSE) Measurement of Core HHFW CD in NSTX Plasma

- Measured q(0) decreases from 1.1 to 0.4 with HHFW CD
 - Offers prospect of controlling q(0) in integrated scenarios
- Measured j_φ profile consistent with predictions from TORIC
 & AORSA full-wave codes
 - TORIC predicts electron trapping significantly reduces CD efficiency

Antenna Upgrades Double Coupled Power for Same Voltage/Strap & Increase ELM Resilience in H-mode

NSTX 12-Strap HHFW Antenna

- Double feed upgrade will permit larger plasmaantenna gap, with more stability and power per strap in 2009
- ELM dump will be added in 2010
- Increased antenna capability will provide bulk heating for advanced scenarios, q(0) control & I_p ramp-up with bootstrap overdrive, with HHFW CD if possible

Double Feed Upgrade Implemented for 2009 Run Campaign

HHFW Research Plan for 2009-10

2009:

- Assess heating & CD operation with NBI using upgraded double fed antenna and using guidance of modeling
- Heating & CD studies in D₂ H-mode with Li injection & LLD
- Coupling/heating into low I_p,T_e OH plasma
- Optimize HHFW coupling into I_p ramp-up

2010:

- Heating & CD operation with NBI H-mode using ELM resilience system:
 - Larger plasma-antenna gap for greater stability & higher power coupling
 - Fast feedback control to reduce neutral beam ion interaction with antenna
 - Use LLD to control antenna neutral pressure

HHFW Research Plan for 2011-13

2011:

- Heating & CD operation with NBI H-mode with fully upgraded HHFW antenna, Li injection & LLD:
 - Benchmark core CD against advanced RF codes upgraded to include interaction with fast ions & use FIDA to diagnose interaction
- HHFW coupling into ramp-up with 28 GHz ECH-assisted start-up

2012-13:

- Explore high power long pulse HHFW heating & CD at B₊(0) ~ 1 T
 - Study electron transport at higher TF with HHFW
 - Extend investigation of surface wave physics to higher TF
 - Study fast-ion interaction versus harmonic
- Support very long pulse scenario:
 - Integrate into Plasma Control System
 - Control q(0)
 - Provide 4 MW bulk heating
- Optimize HHFW with 28 GHz ECH-assisted CHI or PF-only startup to support fully non-inductive plasma startup & ramp-up

ECW/EBW Progress & Plans

28 GHz, 350 kW Gyrotron to Provide Pre-Ionization & ECH-Assisted Non-Inductive Startup in 2011

- Additional 350 kW gyrotron proposed in 2012 [Incremental]
- Collaborate with MAST on 28 GHz ECH/EBWH

EBW Research Objective to Generate Off-axis EBWCD to Stabilize ST-CTF

Y-K. M. Peng, et al., Plasma Phys. Control. Fusion, 47 B263 (2005)

EBW Emission from Core of H-Mode Increased Significantly with Increased Li Evaporation

- Fundamental EBW coupling efficiency increased from < 10% to 65% with Li
- Simulation predicts much less EBW collisional damping for shot with Li
- Expect LLD & higher B_T could decrease damping
- Fluctuations in EBW emission due to changes in coupling caused by n_e

 PhD Thesis fluctuations at EBW MC layer, located in scrape-off

Lithium Evaporation Increases T_e & Reduces L_n Near f_{ce} & 2 f_{ce} B-X-O Mode Conversion (MC) Layer

- f_{ce} & 2f_{ce} B-X-O MC layers typically in plasma scrape off
- T_e increased from 10-30 eV with addition of Li
 - Theoretically B-X-O MC more sensitive to T_e than L_n
 - Significant EBW collisional damping for T_e< 20 eV
 - Ongoing theory/modeling collaborations with Josef Preinhaelter (Prague), Bob Harvey (CompX) & Abhay Ram (MIT)

J. Preinhaelter, Rev. Sci. Instrum. 77, 10F524 (2006)

ECW/EBW Research Plan for 2009-11

2009-10:

- Optimize EBW emission coupling in H-mode with Li evaporation & LLD
 - Assess effect of integrated Li
 - Explore low density plasmas on NSTX with EBW MC inside LCFS
- Collaborate with MAST 28 GHz ECH/EBWH startup experiments
 - ORNL providing 350 kW gyrotron this year
 - MAST 28 GHz system uses grooved center stack tile to change polarization from O- to X-mode which then 100% coverts EBW near axis

2011:

- 350 kW 28 GHz ECH-assisted CHI, PF ramp and plasma gun start-up with fixed horn antenna
 - Explore transition from ECH-assisted startup to HHFW current ramp-up
 - Study whether Li evaporation & LLD can improve EBW coupling with fixed horn antenna during current ramp-up

ECW/EBW Research Plan for 2012-13

2012:

- Install second 350 kW 28 GHz gyrotron [Incremental]
- 700 kW ECH-assisted startup and plasma current ramp-up [Incremental]
- Install 28 GHz O-X-B oblique EBW launcher (or possibly expand MAST EBW collaboration) [Incremental]
- EBW emission/transmission studies at higher TF
- Fundamental 28 GHz on-axis EBWH experiments at 1 T [Incremental]

2013:

700 kW core & off-axis EBW heating studies (benchmark deposition codes) [Incremental]

Summary

- Discovered surface waves can significantly limit HHFW coupling
 - Major increase in HHFW heating & CD performance by increasing B_t(0) & edge density control
- HHFW antenna upgrade in 2009-10 provides higher power, reduced fast ion-antenna interaction & better resilience to ELMs
- HHFW H-mode & ramp-up experiments in 2009-11 will benefit from combination of LLD & Li injection
- Better HHFW coupling at B_t(0) = 1 T in 2012-13 will enable q(0) control & bulk heating for long pulse non-inductive H-mode
- Order of magnitude improvement in EBW coupling in H-mode through Li edge conditioning
 - Improve H-mode EBW coupling with LLD & Li injection in 2009-10
- 350 kW 28 GHz ECH system will support CHI and outer PF non-inductive start-up in 2011-13
 - Incremental funding needed for 700 kW 28 GHz ECH/EBWH

2009-13 HHFW/ECW/EBW Research Timeline

