

Supported by

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

For the NSTX Research Team NSTX 5 Year Plan Review for 2009-13 Conference Room LSB-B318, PPPL

July 28-30, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep U Quebec

Advanced Scenarios and Control (ASC) Outline

- Experimental results from 2003-8
- ASC plan 2009-2011
 - Scenario integration goals
 - Review of integrated modeling results
 - Approaches to achieving these goals
- ASC Plan from 2012-2013 and beyond
 - Role of CS upgrade in integration goals
 - Role of 2nd NBI in long-term integration goals
 - Control system upgrade plans
- Summary and timeline

Optimized shape control has enabled access to advanced regimes on NSTX

- NSTX has achieved record values of plasma shaping S doubled over 5 yr plan time frame
- Continuous technology improvements have allowed control of plasmas with high elongation
- PF coil enhancements have enabled achievement of high triangularity
- rtEFIT developed in collaboration with GA has helped enable achievement of reliable plasma shape control
- Improvements in plasma performance are directly associated with improvements in plasma shaping
- 2008 NSTX combined highest shaping and highest β_N giving longest pulse to date
 - Non-axisymmetric control also important
- Shape control development approaching completion (vessel limitations)

n=1 RFA feedback combined with n=3 correction now routinely used to maintain plasma rotation

- Non-axisymmetric feedback has been developed in collaboration with Columbia University
- Has enabled delay in the onset of deleterious MHD
- Plasma rotation is maintained throughout discharge
- Was in use during most long pulse discharge development in 2008 run

- 2005 Long pulse discharge w/o n=1 feedback and n=3 correction
- 2008 Long pulse discharge with n=1 feedback and n=3 correction

correction maintains rotation

Early H-mode access with early shaping limits flux consumption during current ramp, raises q_{min}

- Reduced flux consumption during I_p ramp-up important for minimizing size of ohmic solenoid in future ST's
- Elevated q_{min} required for high noninductive current drive cases
- Diverting the plasma early in the current ramp achieves both goals
 - Reduces plasma flux by lowering li
 - Leads to earlier H-mode transition raises β , increases bootstrap current
 - Higher Te slows ohmic current penetration raises q(0)

Lithium evaporation increases energy confinement

High toroidal field (0.55T) improves RF coupling in beam heated H-mode plasmas

- Able to double central electron temperature during high density H-mode with 2MW of RF heating power
- High TF crucial to RF coupling
- Opens possibilities for manipulating q profile during high performance discharges

Goal of NSTX integrated scenario research is to narrow the gap between present performance and next-step STs

• Next-step ST's operate at lower f_{GW} , higher f_{NBI-CD} , higher confinement

GOALS: reduce n_e, increase NBI-CD, increase thermal confinement

Present high $\beta_N \& f_{NICD}$	NSTX	NHTX	ST-CTF
A	1.53	1.8	1.5
κ	2.6-2.7	2.8	3.1
β_T [%]	14	12-16	18-28
β_N [%-mT/MA]	5.7	4.5-5	4-6
f_{NICD}	0.65	1.0	1.0
$f_{BS+PS+Diam}$	0.54	0.65-0.75	0.45-0.5
f_{NBI-CD}	0.11	0.25-0.35	0.5-0.55
$f_{Greenwald}$	0.8-1.0	0.4-0.5	0.25-0.3
Here ϵ	1.1	1.3	1.5
Dimensional/Device Parameters:			
Solenoid Capability	Ramp+flat-top	Ramp to full I _P	No/partial
I _P [MA]	0.72	3-3.5	8-10
B _T [T]	0.52	2.0	2.5
R ₀ [m]	0.86	1.0	1.2
a [m]	0.56	0.55	0.8
I _P / aB _{T0} [MA/mT]	2.5	2.7-3.2	4-5

Optimal operational regime will be determined by electron confinement!

Integrated modeling indicates potential path from best NSTX plasmas towards increased f_{NICD} scenarios

WNSTX

NSTX 2009-13 5 year Plan – ASC Overview (Gates)

2009-2011 research plan (pre CS upgrade)

(GOAL: f_{NICD} = 80-90% for $\tau \sim \tau_{CR}$ - TF pulse too short for equilibration)

- Plan for developing low density, high NBI-CD fraction scenario
 - Characterize pumping with LLD (FY09 gas balance milestone)
 - Study pedestal and ELM stability vs. pedestal v^* and Li (FY10 milestone)
 - Test and understand ELM suppression observed with Li
 - Characterize NBI J(r) redistribution from fast-ion and low-frequency MHD (FY09 milestone)
- Plan for developing high normalized beta, high bootstrap fraction scenario
 - Assess confinement, ELM, thermal profile modifications from LLD
 - Increase NBI-CD using profile modifications from LLD
 - Use HHFW with ELM resilience to increase W_e , f_{BS} , and f_{NICD} in discharges with high q_{min}
 - Perform high-elongation high β operation (FY09 milestone)
 - $\kappa \sim 2.8, \tau \geq \tau_{CR}$
 - Integrated ELM control
 - β feedback
- Implement real-time CHERS and v_{ϕ} control
 - Test as means of pressure profile control

Center Stack upgrade enables advanced operation in low collisionality regime

- Achieve lower v^* through the B_t dependence of electron confinement
 - Need 100% NICD, both bootstrap and NBICD increase at lower v^*
 - Up to a factor of four reduction in v^* possible with density control
- Extend pulse so that NSTX can operate for multiple τ_{CR} at lower v^*
 - Higher T_e gives larger τ_{CR} , need longer pulse ~3-4 τ_{CR} for equilibration
 - NSTX now has $\tau_{CR} \sim 0.35$ s, if we double T_e then need ~4s pulse
- Operate at high β_p with a plasma current high enough ($I_p > 700$ kA) to confine full energy fast ions from the neutral beams
 - Larger range of q available with confined NBI
- Enable HHFW coupling in long pulse discharges
 - HHFW coupling improved at higher TF (higher critical density)
- Operate at an aspect ratio and collisionality closer to future STs
 - NHTX, ST-CTF, and ARIES-ST all plan higher A and lower v^* than NSTX

Integrated scenario modeling indicates 100% non-inductive operation possible with B_t = 1T

- Assumes 6.15 MW absorbed beam power for 5s
 - NBI power limited to ~5MW for long pulse will require additional beam power
- Can achieve q_{min}>1 with fully non-inductive current drive
- Scenario achievable without major extrapolations in density, achieved $\beta_{\text{N}},$ or confinement time
 - Requires T_e increases with B_t and density control to moderate levels

NSTX 2009-13 5 year Plan – ASC Overview (Gates)

Research for 2012-2013 (post center stack upgrade)

FY2012 research plans

- Assess impact of higher A on vertical stability and n > 0 no-wall and ideal-wall stability limits. Determine if sufficient power available to reach n > 0 stability limits at higher B_t.
- Study effect of higher B_t on energy confinement
- Assess impact of higher B_t on non-inductive current drive sources, e.g.:
 - bootstrap fraction via increased q and confinement
 - NBI-CD efficiency as a function of Te
 - fast-ion-driven instabilities and possible redistribution of fast-ions and NBI-CD.
- Study effect of higher B_t and I_P on SOL and divertor heat-flux widths
- Assess impact of longer pulse-length on divertor temperature evolution, and develop operating scenarios that minimize peak heat flux as required.
- Study effect of NCC coils on pedestal stability in long-pulse discharges (incremental)
- Implement real-time MSE diagnostic for future current profile control
- FY2013 research plan
 - Assess HHFW coupling, heating, and CD at higher B_t
 - Vary central HHFW-CD to vary q(0), assess impact on confinement and MHD stability
 - Assess impact of NCC coils (*incremental*) on rotation damping and SOL heat flux widths in sustained conditions.
 - Implement real-time equilibrium reconstruction using real-time MSE
 - 2nd NBI (incremental)

NBI upgrade provides a flexible tool for providing additional NBI-CD and heating power

- Increased current drive profile flexibility
 - Varying NBICD profiles from the three new sources
- Off axis NBI current drive capability
 - Current profile control will be required to maintain profiles with optimal stability
- Higher current drive efficiency from outboard tangential sources
 - More current drive capability may be required to reach $f_{NI} \sim 1$
- Additional power to reach β-limit
- Larger tangency radius → more torque → higher rotation drive and more flexible rotation control

Current drive flexibility greatly enhanced with 2nd NBI

- Can drive current from strongly peaked on axis, to peaked off axis depending on source chosen
- Overall higher efficiency increases utility of NBICD during plasma current ramp phase
- Effective current profile control tool when coupled with real-time MSE

2nd NBI would enable control of core *q* and χ profiles in fully non-inductively-driven scenarios using only NBI + bootstrap

- Combination of available sources can control q_{MIN} and core q-shear
 - At H_{98y2}=1.2, J control with $q_{MIN} > 1.2$ requires operation with $f_{GW} > 0.9$
- Magnetic shear control could be important tool for controlling core confinement and MHD stability

- Core transport reduced in RS L-mode

16

Combination of 2nd NBI + B_T=1T operation predicted to enable access to fully non-inductive operation at high $q_{min} = 1.5 - 2$

Study transport, stability (especially NTM) of high q_{min} plasmas assumed for NHTX, ST-CTF

TRANSP calculations of fully non-inductive

July 29, 2008

ONSTX

- Investigate:
 - Impact of more tangential injection on fast-ion distribution function and on Alfven eigenmode stability.
 - Predicted vs. measured power deposition and current drive profiles from new NBI sources.
 - Impact of higher power and lower collisionality on SOL and divertor heat-flux widths
 - Impact of higher power and/or more tangential injection and/or possible fast-ion losses on divertor temperature evolution
 - Operating scenarios that minimize peak heat flux as required.
- Vary mix of NBI sources to vary NBI-CD profile:
 - Modify q profile, and assess impact of global stability and confinement properties
 - Using real-time MSE, implement and assess algorithms for NBIbased J profile control

Summary of Advanced Scenarios & Control Research Plans

- Focus on reduced collisionality for increased non-inductive current drive efficiency to narrow the gap between NSTX and future STs
 - By reducing density 2009-2011
 - By increasing TF 2012-2013 (through improved electron confinement)
- LLD provides important opportunity for controlling density in 2009-2011 time frame
- Center stack upgrade provides expanded operational space consistent with high NICD fraction
- NBI upgrade would provide an extremely flexible tool for current profile control and to assist current ramp-up
- Plasma control tools will continue to be improved providing research opportunities for advanced scenario development
 - $-\beta$ control
 - Real-time rotation control
 - Real-time current profile measurements and equilibrium reconstruction

Advanced Scenarios and Control Timeline

