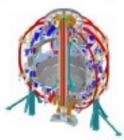
Materials and PFCs TSG Update Status from last PAC and latest discussions MA Jaworski, C Skinner, DP Stotler, R Kaita

11/16/12

As of last PAC


Summary:

- Li PFCs have demonstrated promise for
 - Superior plasma performance
 - High heat flux handling
 - May solve PFC neutron damage and erosion issues in FNSF and demo.
- High confidence implementation requires R&D on:
 - Surface chemistry
 - Off-line heat flux tests of PFC prototypes
 - Tokamak integration
- Staged approach in place from atomistic simulations & lab experiments to test stands, LTX, EAST collaborations, leading to Li-PFC implementation in NSTX-U

Last PAC 5-year outline

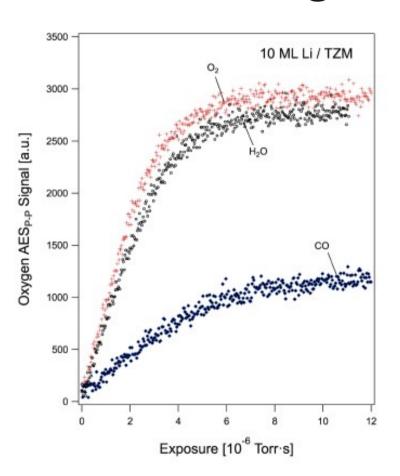
NSTX-U Plan for Years 1-5 of operation:

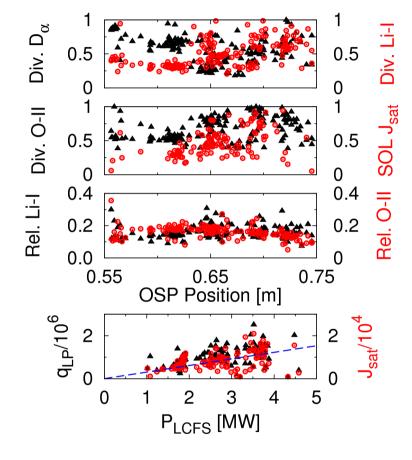
PAC29-5c PAC29-18

Year 1-2:

- Test Li evaporation for pumping longer pulse duration NSTX-U plasmas.
- Test Li evaporation to upper vessel by evaporator/injector, He diffusion, electrostatic sprayer.
- Assess impact of full wall Li coverage on pumping, confinement
- Test ELM control by midplane Li granule injector
- Test Li-PFC prototypes on Magnum PSI and possibly LTX or EAST

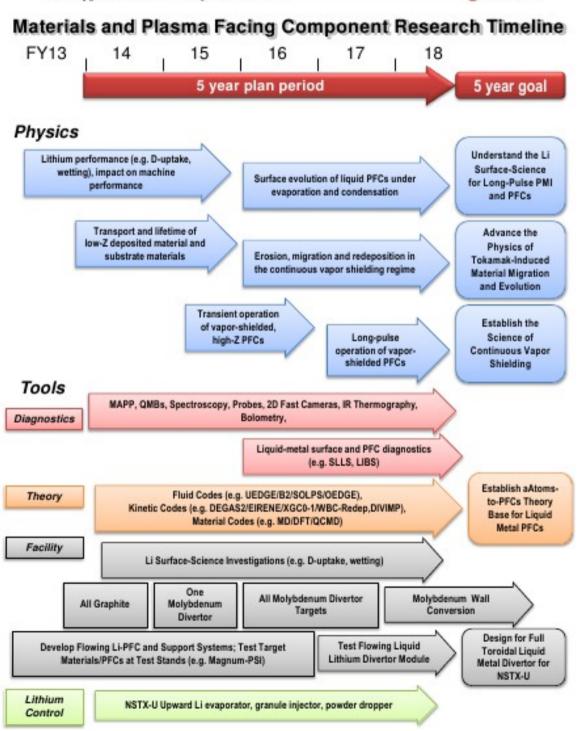
Year 2:


- Down select to best flowing Li-PFC concepts
- Test on Magnum PSI and LTX or EAST


Year 3-5:

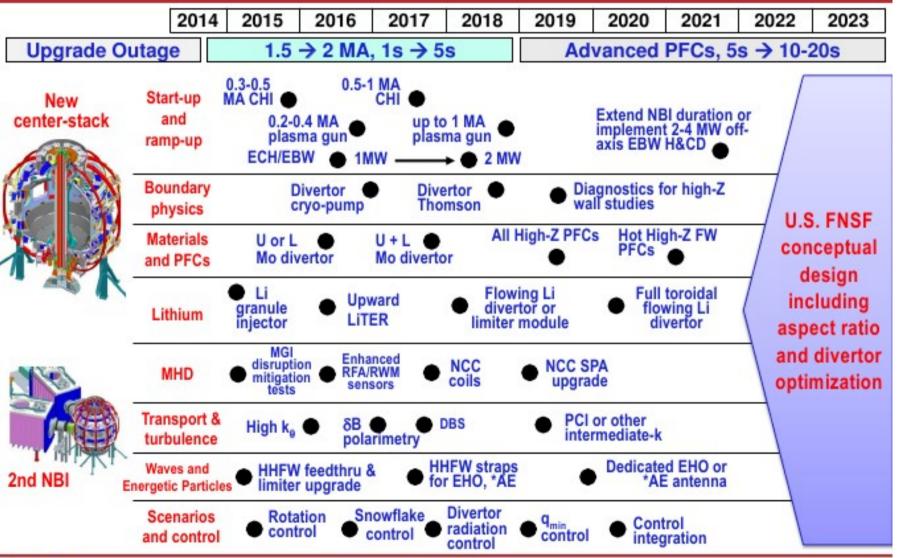
 Test flowing Li-PFC on at least one toroidal sector of NSTX-U, possibly full toroidal coverage system, pending lab-based tests and modelling

Flowing system proposed to mitigate oxidation


Oxidation rate measurements in surface-science laboratory (A. Capece, APS 2012)

LLD contamination by oxides likely due to vacuum conditions in machine – little effect on divertor emission, core plasma performance (Jaworski, IAEA 2012, APS)

Materials and PFCs TSG Discussions for the 5-year plan


- Lithium surface-science for long-pulse PMI and PFCs
 - Skinner, Capece, Roszell, Koel on-going lab experiments
 - Discharge performance with Li conditioning, extension to long-pulse, Duptake/retention
- The physics of tokamak-induced material migration and evolution
 - Erosion of material, migration, redeposition (measure via QMB, marker tiles, etc.)
 - Magnum-PSI experiments on film lifetimes (Abrams APS) near-surface transport of Li, O, B coatings on graphite and TZM
- Establish the science of continuous vapor shielding
 - Examine the interaction of high-temperature lithium surfaces with incident plasmas (Magnum-PSI experiments+, Jaworski, Rognlien, Stotler APS, corresponding modeling work)
 - Liquid-metal target system development to ensure replenishment for NSTX-U pulse lengths

Assumed something like the incremental budget when originally created

Incremental budget

Team developed comprehensive long-range plan supporting ITER, FNSF Budget guess: requires 10-15% increment → must reduce scope up to 1/3

Baseline budget

Strawman/draft upgrades to be in place by 2018 assuming base budget (More work needed by Masa, myself, and you to better define schedule)

	2014 2	2015	2016	5- 2018				
Upgrade C	Outage	1.5	→ 2 MA, 1s					
New center-stack	Start-up and ramp-up		Upgra	eded CHI ECH/EBW 1 MW				
	Boundary physics			Divertor cryo-pump				
	Materials and PFCs			U or L Mo divertor			40	
	Lithium		Li granule injector	Upward LiTER				
	MHD		MGI disruptio mitigatio tests	en Enhanced RFA/RWM sensors			950	
	Transport & turbulence		High I	Polarimetry and DBS			95	
2nd NBI	Waves and Energetic Particles			W feedthru & ter upgrade				
	Scenarios and control		Control: diverto	rotation, snowflak or radiation, q _{min}	e,			