Physics design of cryo-pumps for NSTX-U

September 18, 2011 – J. Menard

Some proposed design constraints:

- Pump(s) on outboard divertor
 Insufficient space on inboard
- Minimize reduction of vacuum chamber volume
- Retain position of passive plates + plate supports
 Minimizes impact on stability, system cost, schedule
- Modification of divertor plates allowed
- Addition of baffle plates allowed

 Length, position, angle, shape should be optimized
- Design to pump range of divertor configurations:
 Standard divertor, high flux expansion (snowflake), ...

Example cryos on DIII-D, NSTX geometry

- DIII-D low and high- δ bottom cryos and baffles

Nucl. Fusion 49 (2009) 092001

Figure 2. An elevation-view of the lower divertor region of the DIII-D vacuum vessel showing, both, the current ISS baffling (*a*) and the pre-2006 low- $\langle \delta \rangle$ baffling (*b*). EFIT equilibria of a typical RMP discharge for each configuration is superimposed to highlight changes to plasma divertor operations.

• NSTX divertor, passive plates, and supports

Some example NSTX OBD cryo options:

 Minimal change to divertor, close chamber volume at bottom of secondary plates

 Shorten divertor plates, minimal changes/attachments to passive plates, close plenum at baffle OD

- Largest chamber volume, large cryo radius and area, no direct line-of-sight to cryo-pump
- Need more/better ideas!

Scope, team, and deliverables

- Scope and team:
 - a. Lead/oversee physics design Rajesh M., Jon M.
 - b. ID shapes and scenarios to be assessed for pumping Stefan G., Vlad S., all
 - c. Generate/ID free-boundary NSTX-U equilibria Stefan G., Jon M.
 - d. NSTX divertor particle flux data for NSTX-U design Mike J. + others
 - e. Pumping modeling John C., LLNL, Daren S.
 - f. Iterate once or twice, choose best pumping chamber configuration all
- Deliverables from PAC-29 presentation (for PAC-31):
 - 1. Higher heating power: P_{NBI}=10 MW (maybe even higher?)
 - 2. D, χ consistent with I_P = 2 MA, B_T = 1 T operation
 - Present values from 1.2 MA, 0.55 T, 6 MW case
 - 3. Up/down symmetric double-null calculation
 - Only lower divertor considered presently
 - 4. Compatibility with power exhaust and snowflake
 - 5. Actual NSTX-U PFC geometry and space constraints
 - 6. Iterate for compatibility with core scenario calculations
- Deadline: mid-January 2012