

Particle and Impurity Control Research and Plans

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Maryland U** Rochester **U** Washington **U Wisconsin**

J.E. Menard, A.H. Boozer, and the NSTX Team

NSTX Program Advisory Committee Meeting Princeton, NJ Jan. 26-28, 2011

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Preliminary assessment of cryopump for NSTX-U has started

- Two calculations: SOLPS (2-D fluid plasma, Monte Carlo neutrals), and analytic model
- Four different geometries examined with SOLPS; entire pump plenum modeled
 - Standard divertor with three different plenum geometries, and one snowflake equilibrium
- Analytic first flight model with standard divertor
 - Plenum pressure computed from plenum geometry, equilibrium and divertor n_e, T_e, and Γ profiles
- Peliminary conclusion: plenum pressure needed to exhaust NBI fueling should be achievable over range of SOL/pedestal n_e

Four geometries scoped with SOLPS for NSTX-U shapes, but with fictitious pump plenums

- Pumping in SOL: standard and snowflake geometries
 - n_e scan simulated by varying target recycling coefficient R_p
 - Pumping simulated by using $R_p=1.0$ and pump sticking fraction=1

Pumping in PFR: horizontal and vertical targets (near OSP)

R. Maingi: Particle and Impurity Control Research and Plans

Neutral pressure needed to exhaust NBI fueling sets the minimum achievable separatrix n_e

- $\Gamma_{\text{NBI}} = 7.5 \times 10^{20} \text{ D} + /\text{s} (6 \text{ MW})$
 - S_{NBI}~12 torr-L/s
- D=0.5, χ=1.0 m²/s in all cases
- Divertor recycling coefficient varied to yield a density scan
- D₂ pressure at cryo pump monitored
- To pump NBI flux at 6 MW, ~
 1 mTorr is needed in plot

SOLPS (no pumping)

Canik

Neutral pressure needed to exhaust NBI fueling sets the minimum achievable separatrix n_e

- Pressures shown are with no pumping
 - With pumping, pressure will be reduced by C/(C+S) ~ 50%
- n_e operating window obtained by additional gas puffing
- Relation to scenarios

Scenario	n _{max} /n _{GW}	n _{max} ped	n _{max} sep
Long pulse	<u><</u> 1	9e19	4.5e19
High NI	<u><</u> 1	7e19	3.5e19
Max I _p	<u><</u> 0.7 - 1	1.3e20	6.5e19

P_{NBI}=10 MW case in progress

Detailed cryopump design calculations with 2D plasma/neutrals codes planned for NSTX-U

- Higher heating: P_{NBI}=10 MW
- D, χ consistent with I_p = 2 MA, B_t = 1 T operation – Present values from 1.2 MA, 0.55 T, 6 MW case
- Up/down symmetric double-null calculation

- Only lower divertor considered presently

- Compatibility with power exhaust and snowflake divertor operation
- Actual NSTX-U PFC geometry and space constraints
- Iterate for compatibility with core scenario calculations

SOLPS simulations with cryo-pumping: SOL standard

- Particle balance
 - Input with puff: 1.85e21 D+/s ~29 torr l-s (of D₂)
 - Pressure in plenum: 1.1 mTorr
 - Pumped flux: 26.4 torr I-s
 - Input w/o puff: 7.5e20 D+/s \sim 11.7 torr I-s
 - Pressure in plenum: 0.53 mTorr
 - Pumped flux: 12.7 torr I-s
- Separatrix densities
 - 2.0x10¹⁹ m⁻³ without puff
 - $3.7 \times 10^{19} \text{ m}^{-3}$ with puff
 - Beam input (for 6 MW) can be pumped at a reasonable nesep, but no much leeway for having a strong density pedestal and keeping low Greenwald fraction

Canik

SOLPS simulations with cryo-pumping: PFR vertical

- Particle balance
 - Input with puff: 1.85e21 D+/s ~29 torr l-s (of D₂)
 - Pressure in plenum: 1.5 mTorr
 - Pumped flux: 29.7 torr I-s
 - Input w/o puff: 7.5e20 D+/s ~ 11.7 torr I-s
 - Pressure in plenum: 0.61 mTorr
 - Pumped flux: 12.1 torr I-s
- Separatrix densities
 - 0.23x10¹⁹ m⁻³ without puff
 - $0.67 \times 10^{19} \text{ m}^{-3}$ with puff
 - Much more room for having good pumping at low densities

Canik