## Divertor designs should aim to be compatible with boundary shapes most likely to be utilized in NSTX-U



Snowflake divertors Standard divertors →

- What is optimal radius for entrance to cryo-pump?
  - Estimate:  $R_{ent} = 0.7$  to 0.85m
  - Should assess with SOLPS
- LLD on OBD could have large surface area for particle & power exhaust
  - Potentially less sensitive to strike-point radius



## Assumptions, scans to perform

- 10MW NBI power for particle fueling = 20 Torr-I/s
- P=1mTorr at  $T_e=10.0eV \rightarrow g\sim4cm$ , h~5cm, q~1MW/m<sup>2</sup>
- Account for pressure drop from baffle entrance to cryo-pump
- Density range:
  - Highest core density:  $I_P = 2MA$ ,  $f_{Greenwald} = 1.0 \rightarrow 2 \times 10^{20}/m^3$
  - Lowest core density:  $I_P = 0.6MA$ ,  $f_{Greenwald} = 0.5 \rightarrow 0.3 \times 10^{20}/m^3$
  - Scan core n<sub>e</sub>: 3, 7, 9, 12, 15, 20 ×  $10^{19}/m^3$
- Scan D and  $\chi$  to match SOL width variation with I<sub>P</sub>
  - Assume  $\lambda$  = 9mm / I<sub>P</sub>[MA]<sup>1.6</sup>
  - − Scan I<sub>P</sub> = 0.6, 0.8, 1, 1.2, 1.5, 2MA  $\rightarrow$   $\lambda$  = 20, 13, 9, 7, 5, 3mm
    - or choose  $\lambda$  = 18, 12, 9, 6, 3mm  $\rightarrow$  I<sub>P</sub> = 0.65, 0.85, 1, 1.3, 2MA
- Scan baffle length to vary radius of baffle/pump entrance:

 $-R_{entrance} = 0.7, 0.75, 0.8, 0.85m$ 

• GEQDSK files & plots for 4 snowflake & 4 standard cases:

http://nstx.pppl.gov/DragNDrop/Five\_Year\_Plans/2014\_2018/design\_studies/cryopumps/technical\_files/geqdsk/