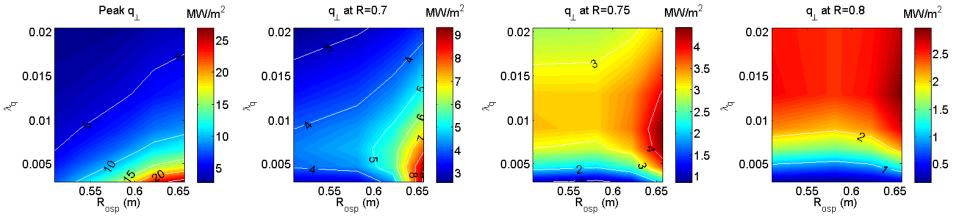
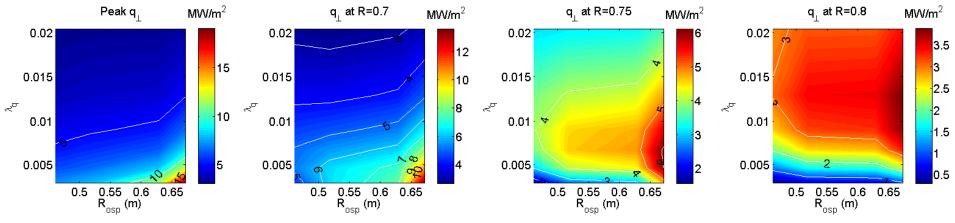

Moving R_{OSP} doesn't change ψ_N at pump entrance very much

- Two sets of equilibria considered
 - Standard divertor, R_{OSP} at four positions
 - Snowflake, again R_{OSP} scan
- Contours: $\psi_N = 1.0, 1.03, 1.06, 1.09, 1.12$
- Strike points for $\psi_N > 1.0$ move much less than separatrix
 - ψ_{N} at likely pump positions varies weakly with R_{OSP}
 - Moving $R_{\rm OSP}$ outwards towards pump doesn't help much until $R_{\rm OSP}$ is very close to pump



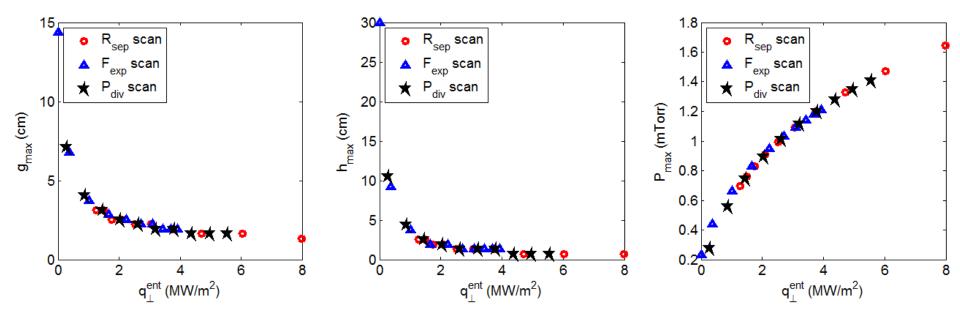
Projecting heat flux profiles

- Exponential poloidal heat flux profile imposed at midplane
 - P=5 MW (e.g., 1/2 of 10 MW goes to outer divertor)
 - $\lambda_q^{OMP} \simeq 0.3$ -2.0 cm
- Mapped along field lines to divertor
 - Total geometric heat flux reduction factor shown on left
 - Example heat flux profiles showing for λ_q^{OMP} =5mm
 - Lots of heat flux at R=0.7, not much at 0.8

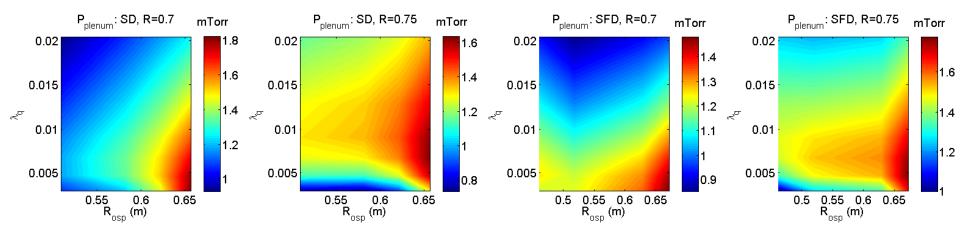


Heat flux at pump locations: standard divertor

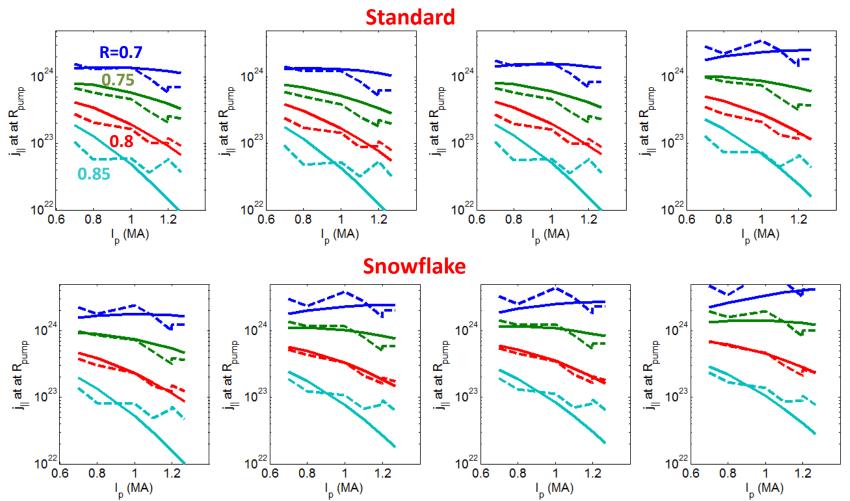
- To keep peak heat flux < 10 MW/m²
 - $R_{OSP} < 0.55 \text{ m OR}$ - $\lambda_{a} > 8 \text{ mm}$
- With pump entrance at R=0.7m, heat flux is >3 MW/m² for all heat flux widths, OSP positions
- R=0.75 m: pumping only ok ($q_{\perp} > 2 \text{ MW/m}^2$) for $\lambda > 5 \text{ mm}$
 - Can't beat this by moving OSP to larger $R \Rightarrow q_{pk}$ becomes too large
- R=0.8 m: pumping works only for λ > 8 mm


Heat flux at pump locations: snowflake divertor

- Power handling:
 - Region with $q_{pk} < 10 \text{ MW/m}^2$ is a bit larger than SD
 - R_{OSP} can be moved out to ~0.6 m even for the narrowest SOL
- Pumping:
 - Works a little bit better than SD
 - Large flux expansion puts higher fluxes in the far SOL locations of the pump
 - Pump entrance at either R=0.7 or 0.75 m should work for basically any SOL width
 - R=0.8 only works for λ > 5 mm


Updating duct optimization for likely entrance position

- Looks like R=0.7 is good position for duct entrance
- New analytic calcs performed for new (old) parameters
 - R_{ent} = 0.7 (0.9) m
 - Field line angle = 3.0° (5.0°)
 - $T_e = 15.0 (10.0) eV$
- Need q_{\perp} ~2 MW/m² to reach 1 mTorr
 - g~2.5 cm, h~2.0 cm


Projecting plenum pressure

- Fix g/h of entrance at 2.5/2.0
- Use profiles directly in pressure calculation (including angles)
- Results consistent with heat flux arguments
 - R=0.7 or 0.75 should ~work for all R_{OSP}, λ_q
 - Moving R_{OSP} increases pressure some, need R_{OSP} near R_{pump} to really make a difference
 - Snowflake has somewhat lower maximum pressure, but has better pumping at low λ_{q}
 - And you can move ROSP close to pump in snowflake without exceeding q_{\perp} limits

Sanity check of flux projections against LP data

- Probe flux at pump entrances (R=0.7,0.75,0.8,0.85): dashed
 - From Mike's fits vs. ψ_N
- Projections based on heat flux: solid
 - $-\lambda_q$ from the same data set
- Not too shabby-especially if you plot it on a log scale

