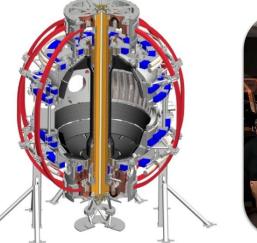


Supported by


NSTX Upgrade Cryo-pumping Design Progress, Particle Control Plans

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

John Canik

S.P.Gerhardt, M. Jaworski, R. Maingi, E. Meier, J. Menard, M. Ono, D. Stotler, V. Soukhanovskii and the NSTX Research Team

> **NSTX-U PAC 31 B318, PPPL** April 17th, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Motivation

- Particle control is needed to meet NSTX-U programmatic goals
 - Avoid density limit, radiative collapse during long-pulse (5s) discharge
 - Reduce collisionality to access new core physics
 - Control n/n_G for non-inductive scenarios
- Several PAC recommendations concern particle control
 - Perform cryo-pump design study as complement to Li efforts

PAC 29-4 PAC 29-5b

PAC 29-10

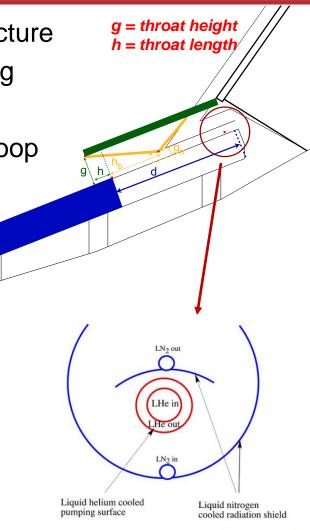
- Consider alternatives to ELM-free scenario: Type-I ELMy or small-ELM

PAC 29-40 PAC 29-42

- Milestone R(12-2): Project deuterium pumping capabilities for NSTX-U using lithium coatings and cryo-pumping
 - Use existing discharges to assess persistence of pumping by Li coatings, project to NSTX-U pulse lengths
 - Develop cryo-pump design, analyze which scenarios and densities can be pumped with stationary deuterium inventory

Outline

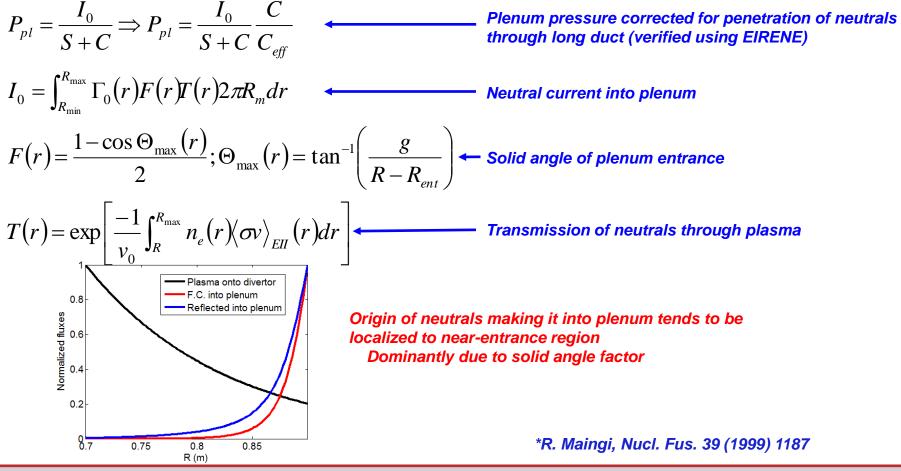
- Progress in cryo-pump design
 - Pumping model developed for use in plenum geometry design
 - Performance and flexibility of optimized system
- Analysis of use of lithium coatings for long-pulse
 - Time-dependent recycling characteristics in ELM-free plasmas
 - Long-pulse, ELMy plasmas with partially passivated lithium
- Future plans
 - Near term analysis
 - Experimental plans for NSTX-U


Cryo pump parameters similar to the DIII-D ADP have been taken as a starting point for design analysis

- Plenum location studied: under new baffling structure near secondary passive plates, possibly replacing some outer divertor tiles
- Pumping capacity of a toroidal liquid He cooled loop (Menon, NSTX Ideas Forum 2002)
 - S=24,000 l/s @ R=1.2m
 - Need plenum pressure of 0.83 mtorr to pump beam input (10MW~20 torr-l/s)
- Pumping rate:

NSTX-

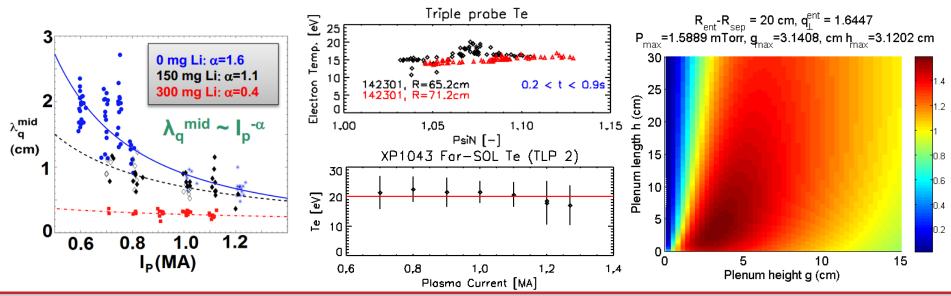
$$I_{pump} = P_{pl}S = \frac{I_0}{S+C}S$$


- $P_{pl} = plenum pressure$
- I₀ = neutral flux into plenum
- C = throat conductance
- To optimize, need C(g,h), I₀(g,h)

Cross-section of the pump (10 cm outer dia.)

Analytic pumping model* used to optimize pumping chamber

- Uses first-flight model for neutral flux into pump plenum
- Requires knowledge of divertor plasma profiles
- Validated against DIII-D experiments

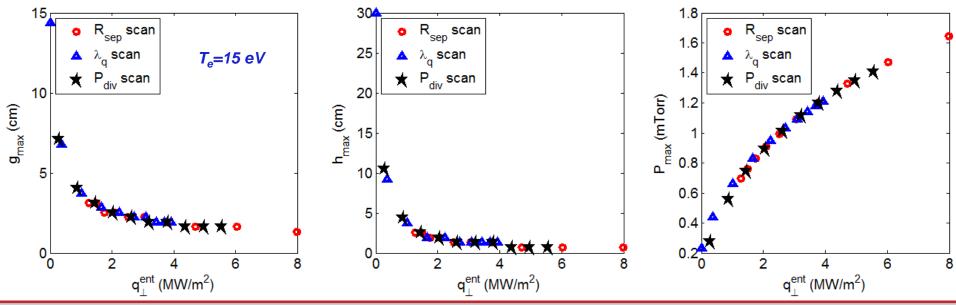

NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

Plasma parameters are estimated to optimize plenum geometry

 If heat flux (scaling expts), angle of B wrt surface (α, LRDFIT), and plasma temperature ("typical" T_e from HDLP) are known, -> density and particle flux profiles can be obtained:

$$\Gamma_{\perp} = q_{\perp} / 7T$$
$$n = \Gamma_{\perp} / \left(\sin \alpha \sqrt{2T/m} \right)$$

- Radial q_{\perp} profiles used for calculations below, with T_e =15.0 eV
 - $P_{div} = 4MW, \lambda_q = 0.5cm, f_{exp} = 25$
 - A few outer strike point positions tried

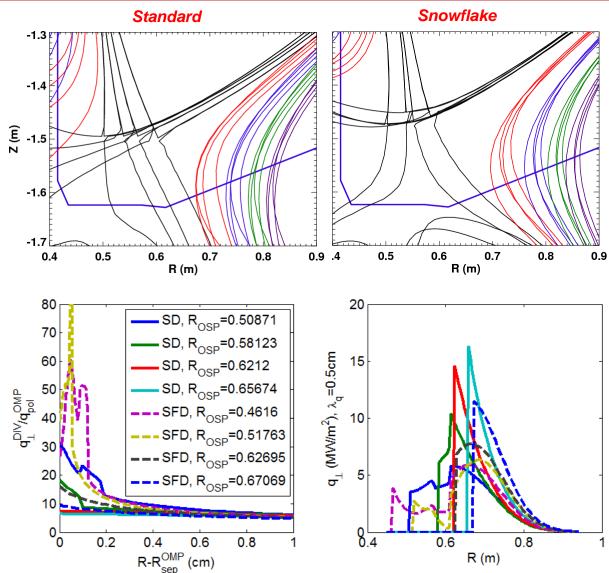


NSTX-

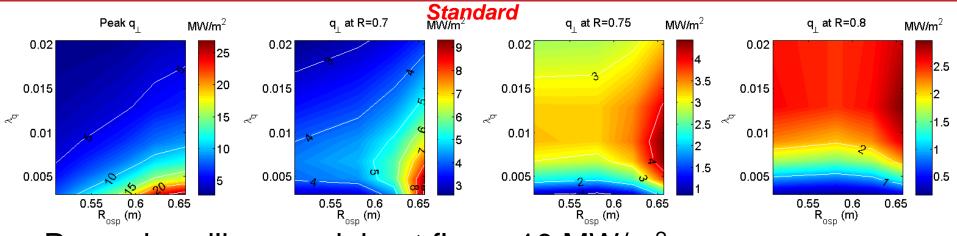
NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

For given pump entrance position, heat flux at pump entrance orders the "optimal" geometry parameters

- Optimal throat height/length depend mainly on heat flux near entrance
 - Doesn't matter if it's varied by moving the OSP, changing flux expansion, or changing total power
 - T_e affects maximum pressure achievable, but only weakly affects g/h
- Optimizing for P=0.8mTorr at T_e=15.0 eV gives g~2.5 cm, h~2 cm at q~2MW/m²

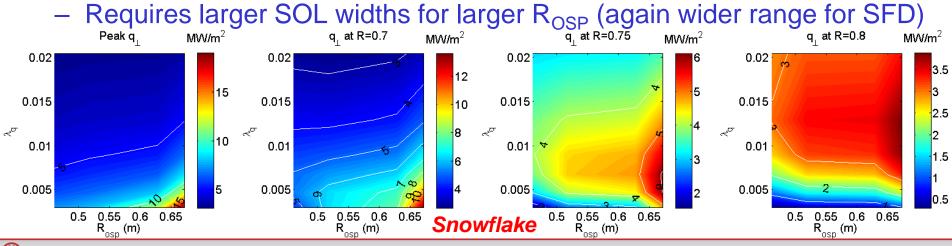


NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)


Equilibria with variety of R_{OSP}, flux expansion are used to map heat flux profiles, assess candidate pump entrance locations

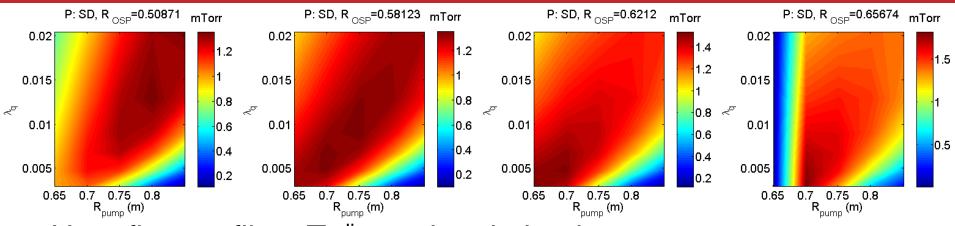
- Standard and snowflake divertors considered
 - Four R_{OSP} each
 - Contours: ψ_N =1.0, 1.03,1.06,1.09,1.12
- Flux expansion, flux surface geometry used to convert midplane heat flux profile (from scaling) to divertor heat flux
 - Assuming P_{DIV} =5MW
 - Indicates q_⊥<2 MW/m² for R_{pump}>0.8m

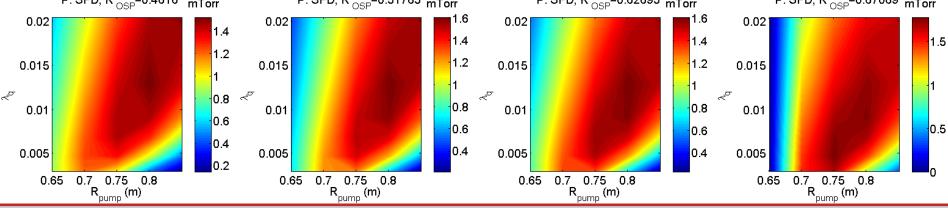
NSTX-


Heat flux projections show plenum entrance at R~0.7-0.75 m likely to provide sufficient pumping

Power handling: peak heat flux < 10 MW/m²

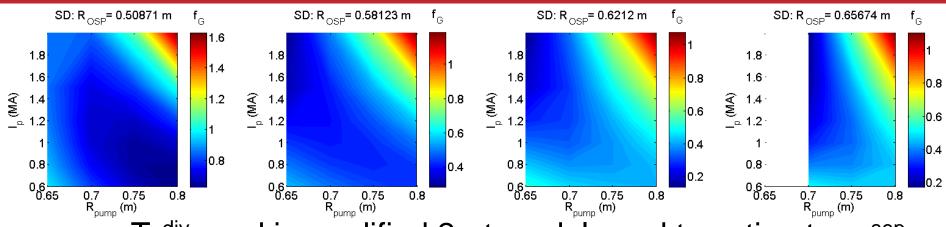
- Restricts R_{OSP} for narrow SOL (wider range for SFD)

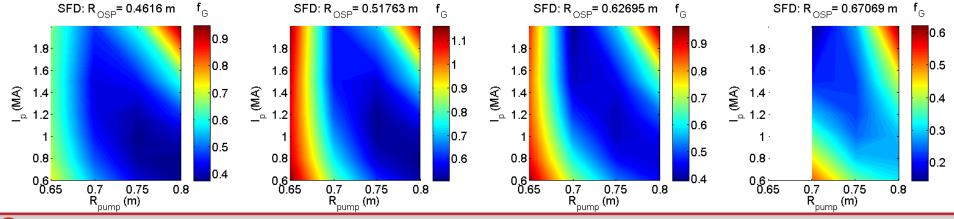

• Pumping: $q_{\perp}^{entrance} > \sim 2 \text{ MW/m}^2$



NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

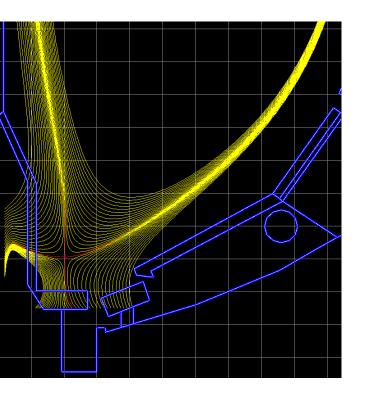
Projections show plenum entrance at R=0.72 can give >1 mTorr for wide range of SOL width, equilibria


- Heat flux profiles, T_e^{div}, and optimized entrance parameters used in analytic model for plenum pressure
- Optimizing position for narrowest SOL gives R_{pump}~0.72
 - Narrow SOL gives least flexibility in moving R_{OSP} to improve pumping P: SFD, R_{OSP}=0.4616 mTorr P: SFD, R_{OSP}=0.51763 mTorr P: SFD, R_{OSP}=0.62695 mTorr P: SFD, R_{OSP}=0.67069 mTorr


NSTX-

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

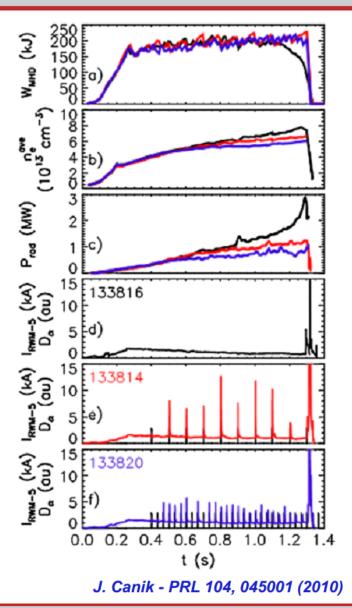
R_{pump}=0.72 supports low Greenwald fraction for range of I_p, equilibria


- q_{||}sep, T_e^{div} used in modified 2-pt model used to estimate n_e^{sep}
 q_{||}^{sep} from I_p scaling, T_e^{div} varied
- n_e/n_e^{sep} ~ 3 assumed to estimate f_G
- f_G shown is that at which pumped flux balances NBI input

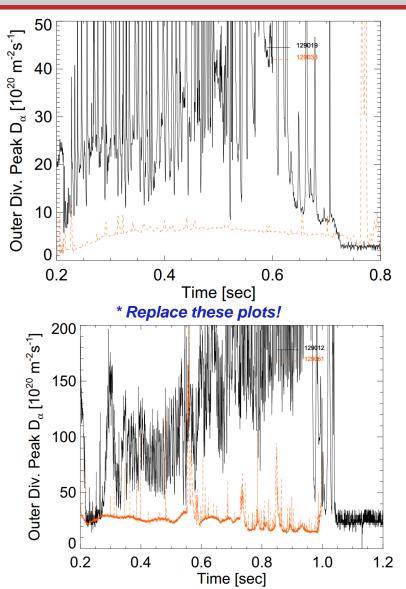
NSTX-

NSTX-U PAC-31 - Particle Control Plans, Canik (4/17/2012)

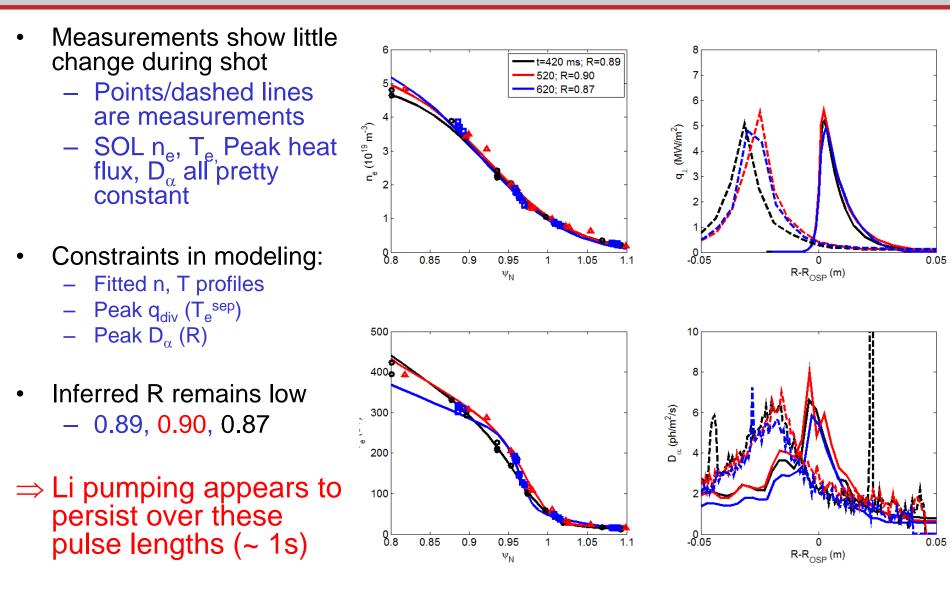
Optimized plenum geometry capable of pumping to low density under a variety of conditions



- Achievable f_G down to < 0.5
 - Moving R_{OSP} closer
 to pump allows
 lower n_e, but limited
 by power handling
- High flux expansion in SFD gives better pumping with SOLside configuration
 - And more room to increase R_{OSP} at high I_p

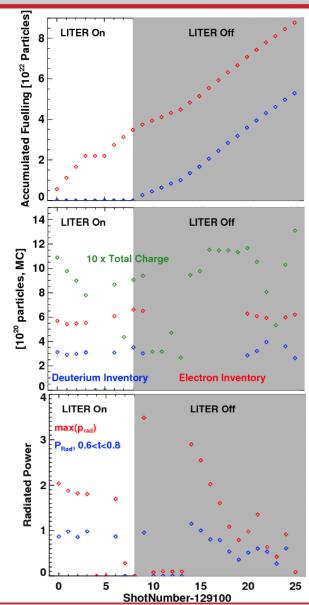

Scenarios with Li coatings and ELMs trend towards stationary D and C inventory—but how do they extrapolate?

- Li coatings + triggered ELMs come closest to achieving stationary D inventory and Zeff
- How do these parameters project to NSTX-U parameters?
 - Up to 5x longer pulse
 - Up to 2x higher NBI fueling
- How persistent is D pumping by Li?


Low-recycling conditions with lithium coatings last throughout NSTX discharges

- Heavily lithium coated, ELMfree discharges studied
 - Most thoroughly analyzed
 2008 pre- to post-lithium
 discharges
- Peak D_α emission at outer divertor does not increase toward the end of the discharge
 - And in fact often decreases
 - Without lithium, recycling increases througout shot

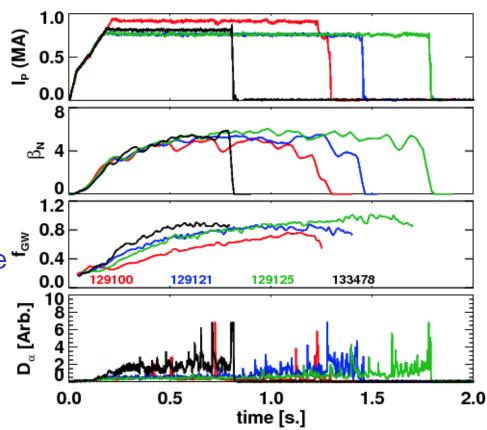
SOLPS modeling indicates recycling coefficient remains low throughout low-δ discharge



NSTX-

Experiments following the shut-off of LITER show D inventory control for many shots

- LITER operated for ~90 discharges prior to lithium running out
- ~20 shots taken without LITER
 - Integrated discharge time ~25 s
 - Accumulated fueling ~5x10²² particles
 - Including performance optimization experiments->plasma not held constant
 - He GDC performed between shots
- Without LITER, ELMs returned
 - Mostly small
 - Radiated power progressively reduced
- Fairly constant D inventory maintained throughout sequence



The longest pulse discharges late in the sequence had a flattened out n_e trace while maintaining high performance

- 129100: 900 kA shot just before LITER ran out.
- 129121, 129125: long pulse optimization sequence
- ~5x the number of particles passed through as in an NSTX-U discharge
 - Still able to roll over density time trace (at high f_G)
- ⇒ May be possible to tailor lithium deposition to provide long-pulse pumping while maintaining ELMs for impurity control

NSTX-

Further analysis plans during outage

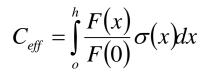
- Cryo-pumping design
 - Confirm plenum optimization using SOLPS (B2-EIRENE)
 - More comprehensive treatment of neutral transport (beyond first-flight)
 - Can treat radiative/detached divertor
 - Investigate design details of chosen plenum geometry
 - Is clearing area currently occupied by divertor tiles feasible?
 - Getting closer to engineering design
- Lithium persistence for long-pulse (with ELMs)
 - Further modeling with 2D fluid codes (UEDGE/SOLPS/OEDGE)
 - Recycling analysis for high- δ , longer pulse ELM-free discharges
 - Analysis of long, ELMy discharge
 - Extrapolation to NSTX-U
 - Longer pulse, higher NBI particle input

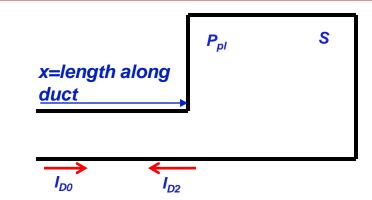
- Cryo-pump design
 - Measure plasma parameters at likely pump entrance location
 - Document Γ , T_e as I_p, P, flux expansion, etc are varied
 - Finalize physics design
- Impurity control with lithium coatings
 - Develop ELMy scenarios with lithium coatings
 - Operate with boronized carbon (no Li) early for comparison to NSTX and to establish reference conditions for NSTX-U
 - Perform experiments with controlled scans lithium deposition amounts, document recycling and ELM characteristics of high-performance plasma
 - Test passivation of lithium with D₂ glow for control of pumping properties
 - Optimize lithium application (pumping vs. ELMs), combine with impurity control techniques (ELM triggering, snowflake, etc) as needed towards steady state plasmas without impurity problems
 - Test persistence of lithium coatings
 - Measure recycling characteristics as power, ion flux, pulse length are varied
 - Use rapid SGI gas pulses to measure SOL pump-out vs time within shot
 - Later stages: measure impurity behavior with Li on Mo tiles

Long term plans (NSTX-U years 3-5)

- Install cryo-pump as part of long-pulse divertor
 - Present thinking is to put cryo in upper divertor, with liquid Li system on lower
- Explore performance of pumping system
 - Document pumping rates as P, I_p , R_{OSP} are varied
 - Test pumping of high flux expansion divertor
 - Assess n/n_G achievable with pumping in various conditions, and develop low-density, high-performance scenario
 - Develop long-pulse, density controlled plasmas for range of n/n_G
 - Compare to lithium-based pumping

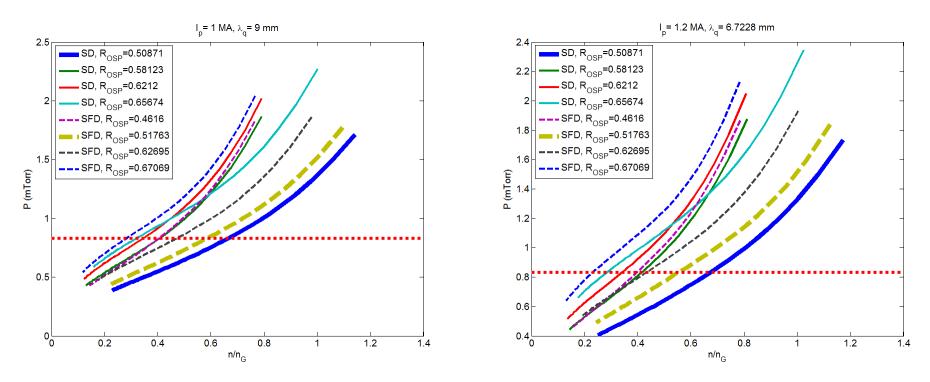
NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

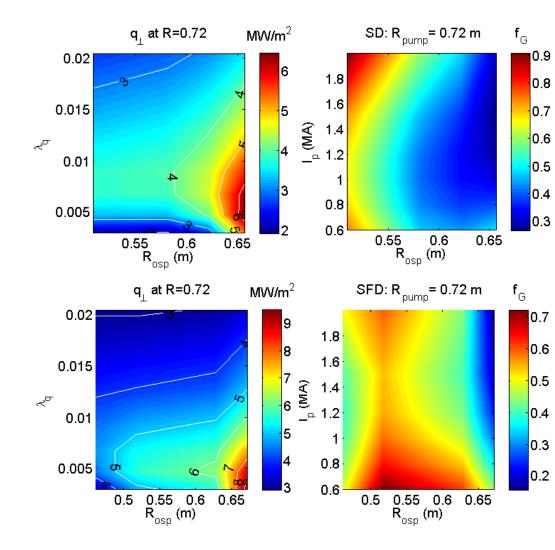

Penetration of neutrals through a long throat is accounted for to correct the conductance


NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)

- I_{D0} = I_{D0}(x) = current of "fast" atomic deuterium entering from plasma
 If fast atoms are turned into thermal molecules on collision will the wall, then:
 I_{D0}(x) = I_{D0}(0)*F(x)/F(0), where F is the solid angle factor evaluated along x
- I_{D2} = current of thermal molecules leaving
- I_{D2} = volume integral of sources (I_{D0}), sinks ($P_{pl}S$) $\Rightarrow I_{D2}(x) = I_{D0}(x) - P_{pl}S$
- Pressure is $\Delta P = \int^{h} I(x)\sigma(x)dx, \sigma = \frac{3}{4\overline{\nu}}\frac{H}{A^2}, \frac{1}{C} = \int^{h} \sigma(x)dx$
- So plenum pressure is

NSTX-


$$P_{pl} = \int_{o}^{h} I_{D2}(x)\sigma(x)dx = \int_{o}^{h} I_{D0}(x)\sigma(x)dx - \int_{o}^{h} P_{pl}S\sigma(x)dx$$
$$= I_{D0}(0)\int_{o}^{h} \frac{F(x)}{F(0)}\sigma(x)dx - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{C_{eff}} - \frac{P_{pl}S}{C} = \frac{I_{D0}(0)}{S+C}\frac{C}{C_{eff}}$$


Estimating achievable n/n_G

- n/n_G varied by scanning T_e^{div}
- To pump beams, need P~0.8 mTorr
- f_G shown is where the pumping balances beam input
 - Minimum achievable n_e -> could puff to increase

Projected performance of the optimized plenum geometry

NSTX-U PAC-31 – Particle Control Plans, Canik (4/17/2012)