

Supported by

Non-axisymmetric Control Coil (NCC) design and analysis plan for NSTX-U

Coll of Wm & Marv Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Jong-Kyu Park, For NSTX-U Team

> B318, PPPL July 19, 2012

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

Motivation

- Opportunity for Non-axisymmetric Control Coil (NCC) may exist in NSTX-U in 3rd or 4th year operation
- It is important to motivate NCC by piling up physics analyses and justifying utilities in NSTX-U 5yr-plan documents
- We need coils, targets, and analysis plan

Agenda

- Coil option and analyses, previously done for NSTX (S. Sabbagh)
- Discussion:
 - Coil option (Primary and secondary, or new?)
 - NSTX-U targets (A couple of cases from Stefan?)
 - Analysis plan (and time frame?)
 - 3.3.3.1. Non-axisymmetric Control Coil (NCC) to achieve:

Tentative outlines in 5-yr plan documents

- 3.3.3.1.1. Rotation control, and thereby RWM kinetic stabilization, error field correction, tearing mode stabilization
- 3.3.3.1.2. RWM active control for significant multi-mode spectrum
- 3.3.3.1.3. ELM control and stabilization
- 3.3.3.1.4. Prediction for ITER 3D coil capabilities
- 3.3.3.1.5. Simultaneous control for rotation, RWM, error field, TM, ELM
- 3.3.3.1.6. IPEC, NTV, VALEN-3D, RWMSC codes will be actively used for 3D physics studies with NCCs

Coil option

- Primary and secondary option?
 - Coil geometries are available (S. Sabbagh)
 - Will give the richest spectrum with existing 6 RWM/EF coils for tokamaks, and be tested first in high performance ST
 - 12-12 off-midplane internal coils + 6 midplane internal-like coils
 - MAST has 6-12 off-midplane coils + 4 external coils
 - Clean and rotating n=1-3 is possible
 - Rotating n=4 is possible (with higher n harmonics)
 - Standing n=5-6 is possible
- Other options?
 - Possible to consider other technically valid options?
 - Possible for analysis in short-time frame?

NSTX-U target plasmas

- How many targets in analysis?
 - Many targets are available (S. Gerhardt)
- High performance targets?
 - High non-inductive current fraction?
 - Important for plasma response
 - With a couple of NBI combinations?
 - Important for NTV, rotation, fast ions
 - Produce rotation and fast-ion profiles and do RWM kinetic calculations?
- High current and field?
 - $-I_{P}=1-2MA, B_{T}=0.5-1.0T?$
 - Important for coil currents, vacuum Chirikov calculations, etc

5

Analysis plan

- Level of details : Possible utility? Or Sophisticated metric?
- Analysis:
 - RWM active control (J. Bialek)
 - VALEN3D, done for NSTX, most certain
 - Error Field Correction (J.-K. Park)
 - IPEC, clear, but weak impacts expected
 - NTV and rotation control (J.-K. Park, K. Kim)
 - NTV, torque is clear, but rotation profile is difficult to predict
 - RWM kinetic stabilization (J. Berkery)
 - MISK, secondary, rotation profile is needed
 - ELM control and stabilization (?)
 - TRIP3D (or VAC3D) done for NSTX, clear, but only for necessary condition
 - Simultaneous control (?)
 - n=1+3 correction + RWM active control + rotation control
 - Prediction for ITER 3D coil capabilities (?)
 - Other analysis (?)

6