

Supported by

Plans / collaboration discussion – stability/ control theory/modeling (Columbia U. group)

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

V1.1

S.A. Sabbagh¹, J.W. Berkery¹ J.M. Bialek¹, Y.S. Park¹, T.E. Evans², S.P. Gerhardt³, S. Jardin³, S. Kruger⁴, J.-K. Park³, Z. Wang³ ¹Department of Applied Physics, Columbia University, NY, NY ²General Atomics, San Diego, CA ³Plasma Physics Laboratory, Princeton University, Princeton, NJ Tech-X, Boulder, CO NSTX-U Macrostability TSG meeting October 1st, 2013

PPPL

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science

Columbia U. NSTX-U grant proposal research plans – drive suggestions for theory/simulation collaboration ideas

Physics research areas on NSTX-U

- Global MHD mode stabilization physics (incl. kinetic RWM physics)
- Global MHD mode active control
- Non-resonant plasma rotation alteration / physics / control (NTV)
- NCC coil design

Related/coordinated research on KSTAR

- Aimed at long-pulse, high beta
- Higher aspect ratio of KSTAR provides opportunity for comparison to NSTX-U to determine role of A

Quantitative analysis on ITER cases, future devices

Device/code benchmarking efforts (major example – ITPA MDC-2)

Near-term analysis: continue analysis / publication of NSTX results, with related device/code benchmarking

List of physics topics / codes in use / planned

Kinetic RWM stabilization

- MISK (linear kinetic RWM stability code)
- M3D-C¹, NIMROD: further linear benchmarking, and non-linear runs for NSTX-U (e.g. NIMROD: toroidal resistive wall tests)

Active RWM control

- RWM state-space controller development (incl. multi-mode)
- VALEN / mmVALEN (multi-mode)
- Non-resonant NTV physics (focus on active rotation control)
 - NTVTOK (Shaing et al. formulation, connecting collisionality regimes)
- Equilibrium development
 - NSTX EFIT further development for NSTX-U
- KSTAR collaboration closely coupled to NSTX-U
 - Same analysis tools applied on related physics topics to investgate (i) aspect ratio dependence, (ii) long-pulse aspects

Planned analysis builds from present capabilities and collaborative work

Equilibrium

- Free-boundary: NSTX EFIT
- □ Fixed boundary: CHEASE (w/Liu), JSOLVER, etc.

Stability

- DCON, PEST: ideal linear stability analysis
- MISK (w/R. Betti): kinetic RWM stability analysis
- □ M3D-C¹ (w/S. Jardin, N. Ferraro): linear/non-linear stability
- □ NIMROD (w/S. Kruger): recent collaboration started NSTX cases being run

3D Physics

- □ NTVTOK: NTV code on CU computer, used present NSTX data analysis
- TRIP3D (w/T. Evans): ELM mitigation used for KSTAR, etc.
- M3D-C¹ (w/S. Jardin): global mode stability, effect of 3D field on stability, (w/ T. Evans, N. Ferraro, S. Jardin): plasma response

Control

- VALEN: RWM / dynamic error field control analysis
- Multi-mode VALEN: Unstable MHD mode spectrum and control
- RWMSC: State-space RWM analysis / feedback control

Multi-year ITPA MDC-2 benchmarking of kinetic RWM codes reaching its goals

	r _{wall} / a	ldeal δW/-δW _∞	Re(δW _k) /δW _∞	Im(δW _k)/ (δW _∞)	γτ _{wall}	ωτ _{wall}	$\frac{\delta W_{k}}{\omega_{E}} = \infty$
<u>Solov'ev 1</u> (MARS-K) (MISK)	1.15	1.187 1.122	0.0256 0.0179	-0.0121 -0.0117	0.803 0.861	0.0180 0.0189	0.157 0.160
<u>Solov'ev 3</u> (MARS-K) (MISK)	1.10	1.830 2.337	0.0919 0.0879	-0.169 -0.090	0.471 0.374	0.114 0.051	1.98 1.10
<u>ITER</u> (MARS-K) (MISK)	1.50	0.682 0.677	0.241 0.367	-0.046 -0.133	0.817 0.581	0.090 0.202	6.11 6.67

- Recent success in producing agreement between MISK and MARS-K
 - PENT code development added in 2013
- MISK code has been extensively used to quantitatively compare theory/experiment in NSTX
 - 6 publications from NSTX (first is from 2008)
- □ MDC-2 process has altered both MISK and MARS-K a bit
 - MISK comparison to NSTX RWM stability experiments continues to evaluate changes

WNSTX-U Plans / collaboration discussion – stability / control theory / modeling – Columbia U. Group (S.A. Sabbagh, et al.) Oct 1st, 2013

Discussion topics related to kinetic RWM stabilization

- Stabilization physics due to fast particles should be further addressed
 - Effects of anisotropic (e.g. NBI, RF) particle populations still not fully explored
 - What are destabilization mechanisms (linear, or non-linear) that can be caused by fast particles?
 - □ Is stabilization accounted due to Maxwellian distributions complete?

Long-standing issue – effect of key rational surfaces

- Generally, numerical integration of ideal eigenfunction very close to rational surfaces does not yield agreement with experiment
- In fact, omitting regions very close to key rationals yields results that compare better in quantitative comparison to experiment
- Major task with theory: develop an improved model of the plasma near key rationals

RWM active control capability increases as partial NCC coils are added (midplane RWM coils included)

RWM active control capability increases further with full NCC (midplane RWM coils included)

Comments and discussion topics related to NCC design analysis for NSTX-U

- The present approach of combining key figures of merit to produce a multi-use coil system is the correct one
- We need to be careful that further analysis / results in the coming year that influences the NCC design doesn't greatly decrease multi-use flexibility
 - E.g. recent ELM suppression results from DIII-D indicate that a subset of I-coils are adequate for ELM control – NCC coil design should (and can) expand to test this, rather than downsize
 - Need to avoid similar potential issue based on unproven theory that might restrict physics studies rather than provide a coil to prove them

Next steps for NCC design for RWM active control (CU plan)

- Realistic sensors that minimize coupling to passive plates need to be designed and implemented in calculations of present NCC design
- NSTX-U should have sensors with both weak and strong coupling to passive plates for RWM state-space controller physics studies

M3D-C¹ code example for KSTAR, comparison to DCON

KSTAR DCON n = 1 unstable mode eigenfunction

<u>M3D-C¹ unstable mode velocity stream function and δB_n </u>

- Linear stability analysis using M3D-C¹ code (collaboration with S. Jardin)
 - Extended MHD code solving full twofluid MHD equations in 3D geometry
 - Non-linear code, presently being used in linear mode for initial runs

Ideal n = 1 stability limit from DCON and M3D-C¹ compare well

- For the same input equilibria, "equivalent" wall configurations compared
- With-wall n = 1 stability limit computed as $\beta_N \sim 5.0$ in both calculations
- Further M3D-C¹ calculations for KSTAR will include improved wall configurations (3D, resistive wall) and analysis for resistive instabilities

NSTX-U Plans / collaboration discussion – stability / control theory / modeling – Columbia U. Group (S.A. Sabbagh, et al.) Oct 1st, 2013

Discussion topics related to non-linear MHD code analysis

□ Stability in the presence of a toroidal resistive wall

- Much experimental experience in NSTX can test code using existing data
- □ M3D-C¹: resistive wall model is close (we're ready to beta test!)
- NIMROD: collaboration with S. Kruger and student
 - Initial tests exposed an issue with model
 - Model recently fixed, first tests on NSTX equilibria should be ready by APS 2013

Differential rotation between wall and mode is highly desired

- Physics studies of a fully locked mode are important, but differential rotation is needed to attempt to mimic kink stabilization dynamics
- Kinetic stabilization physics is highly desired
 - For comparison to present tested linear codes (implementation is obviously different!), as well as direct comparison to experiment
 - M3D-C¹, NIMROD in different stages of development in this regard

Model-based RWM state-space controller used on NSTX improves standard PID control

- Control approach proposed for ITER
- Can describe n > 1, varied poloidal mode spectrum in model
- 3D mode and conducting hardware features described in real-time
 - Greater detail measured by upgraded sensor coverage is better utilized than with PID

Discussion topics related to model-based RWM state-space control (RWMSC)

- Present NSTX RWMSC will be upgraded by the Columbia U. group for NSTX-U
 - Upgrade includes independent control of present 6 RWM coils on NSTX-U, multi-mode control capability (n = 1 – 3), upgrade path to NCC, etc.
- Can real-time plasma response model be expanded?
 - **D** Present model is the Boozer (s, α) model
 - E.g. kinetic stabilization effects can be included directly through this model
 - However, basic eigenfunctions are chosen a priori and are then altered by this response model. Can this specification be made more generally?
 - Present modes and plasma response model are for ideal linear eigenfunctions. Can more general eigenfunctions be specified? (e.g. non-linear saturated?)
 - What would be the appropriate plasma response model in this case?

Analysis / code expansion driven by proposed research, NSTX-U device needs

Equilibrium

- □ NSTX-U EFIT: expand diagnostics/model, increase (R,Z,t) resolution, speed
- □ CHEASE: (w/Liu), etc.: equilibrium refinement / exchange

Stability

- DCON, PEST: ideal linear stability analysis (resistive DCON very close)
- MISK: continued quantitative development, driven by ITPA MDC-2 NSTX XP data
- □ M3D-C¹: resistive wall available soon / desire for kinetic effects (compare to MISK)
- NIMROD: resistive wall / kinetic effects available collaborative initial tests on NSTX cases with resistive wall underway with S. Kruger and UW student.

3D Physics

- NTVTOK: once NSTX analysis completed, will compare with IPEC and POCA codes
- □ TRIP3D: ELM mitigation use for NSTX-U as desired
- □ M3D-C¹ (Jardin, Ferraro): desire resistive wall, and kinetic stabilization effects

Control

- □ VALEN: continue NSTX-U RWM control analysis (that has already begun)
- Multi-mode VALEN: multi-mode spectrum NSTX-U, active control w/RWMSC
- RWMSC: n > 1 modeling + upgrades, control simulator w/expanded inputs
 - Inputs: Device data, vacuum field, code results (VALEN, M3D-C¹, etc.)