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Outline!
-   Validation of NTV physics with particle simulation!
-  Prediction of magnetic braking in NSTX-U!
-   Possible application to kinetic potential energy!
-   Future work!
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Theory: Solid

NTV physics has been validated using a guiding-center 
particle simulation with POCA 

Modified closed orbit (n=3, l=1)!

Original bounce orbit w/o rotation!
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Quadratic δB dependency!Field resonance!

Toroidal mode de-coupling!

Multi-mode!
Single sum!

Bounce-harmonic resonance!
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Collisionality dependency!
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Various braking profiles can be achieved in NSTX-U 

Midplane n=3  NCC n=1  NCC n=3  NCC n=4  NCC n=6!

•  POCA predicts variability of braking profiles by Midplane and NCC  
–  (Full and/or partial) NCC can provide various braking profiles by n=1 ~ 6, depending on 

phases: Consistent to δB profiles 
–  Polynomial degree for fitting δB should be carefully selected in high n (=4,6) cases for 

better radial resolution in NTV calculations 
–  Change target equilibrium and kinetic profiles 

Averaged δB2 profile!
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•  Perturbed magnetic field is given as 

•  POCA calculates NTV by  

•  Kinetic potential energy drives NTV force 

•  δWK calculation with particle simulation is under test 

δWK can be calculated using POCA in NSTX-U 

€ 

Tϕ = 2inδWK

€ 

Tϕ =
δP
B
∂B
∂ϕ

€ 

Tϕ = n δP
B

amn sin(mϑ − nϕ) − bmn cos(mϑ − nϕ)[ ]
m
∑€ 

δBmn (ψn ) = amn (ψn )cos(mϑ − nϕ) + bmn (ψn )sin(mϑ − nϕ)
m
∑

€ 

δWK = −
1
2

δP
B

amn cos(mϑ − nϕ) + bmn sin(mϑ − nϕ)[ ]
m
∑

[J.-K. Park, POP (2011)]!
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Future Work 
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•  Particle simulation will be useful to extensively study NTV transport in 
NSTX-U 

–  Predict broad/steep braking profiles depending on the toroidal mode and coil phase 
–  Require detailed study on high toroidal mode for local braking 
–  Change target equilibrium and kinetic profiles 

•  Kinetic potential energy calculation will be tested 
–  Compare δWK with MARS-K, MISK, IPEC-PENT, etc. 
–  Physics verification and validation, application to NSTX-U 

•  Field line tracing with vacuum and ideal plasma response is available 
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Back up 
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POCA solves Fokker-Planck equation with guiding-center 
orbit equations 

•  Guiding-center motion is described by Hamiltonian equations of motion 

•  δf is calculated from Fokker-Planck equation 
–  Fokker-Planck equation is written as  

–  Fokker-Planck equation is reduced to	


–  Using local Maxwellian, δf can be obtained from  
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[M.N Rosenbluth, PFL (1972)]!
[M. Sasinowski and A.H. Boozer, POP (1997)]!

[R.B. White, PFL B (1990)]!
[M. Sasinowski and A.H. Boozer, POP (1997)]!
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Closed orbits by BH resonances can be found in NSTX   

•  Bounce-harmonic resonance almost always exist in perturbed tokamaks 
–  BH resonance always exist in the finite ExB due to Maxwellian energy distribution, and 

on every surface due to multi-harmonic magnetic perturbations   
–  Modified closed orbits, theoretically predicted and numerically reproduced in the simple 

configuration, can be also found in the complicated NSTX configuration 
–  Identical features in orbit-closing by resonance 

Closed orbit (n=1, l=1)! Closed orbit (n=2, l=1)! Closed orbit (n=3, l=1)!

Original bounce orbits w/o rotation!
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POCA is being actively applied to experimental analysis 
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•  Perturbed magnetic field spectrum provided by IPEC 

–  Original IPEC output contains nonphysical peaks at the rational surfaces 
–  Fitting technique (i.e. Chebyshev polynomials) will be used in POCA as 

–  Fitting follows overall features of IPEC δB, and effectively smoothes the peaks € 
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IPEC!

POCA!

nc = 10!
    = 20!
    = 30!
    = 40!
    = 50!

NSTX #124439 (θ=0.0, φ=0.0)!
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Consistent NTV profile and total NTV was obtained in DIII-D 
n=3 magnetic braking 
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•  Application of POCA to DIII-D n=3 magnetic braking (in QH mode 
experiments) using IPEC δB gives a consistent NTV  

DIII-D #145117 (Burrell, Garofalo) ~ 3Nm!

IPEC-PENT ~ 2.8Nm!

IPEC-LAR ~ 2.6Nm!

POCA ~ 2.9Nm!
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Prediction of NTV in NSTX can be improved with POCA  
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Exp. ~3.5Nm 
POCA ~2.7Nm 
Theory ~0.5Nm!
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ν-regime! 1/ν-regime!

Bounce-harmonic!

1/ν-regime!

•  Bounce-harmonic resonances can dominate NTV transport 
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Semi-analytic numerical routines in IPEC have been 
compared to POCA  
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Field Line Tracing Simulations for NCC 
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resonant n=1 by NCC! less-resonant n=1 by NCC! less-resonant n=3 by NCC!n=3 by Midplane!

n=4 by NCC! n=6 by NCC!
•  POCA-FLT supports capability of NCC to 

produce various 3D field characteristics 
–  POCA-FLT predicts modifications of 

vacuum stochastic layers for n=1~6  
–  NCC can provide resonant or less-

resonant fields depending on the phase 
but similar NTV braking profile  

–  Higher toroidal mode supplies stronger 
field splitting on the target 
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General Perturbed Equilibrium Code (GPEC) is on progress 

•  Perturbed equilibrium codes are efficient to study 3D field physics in 
tokamaks with non-axisymmetric perturbations 

–  IPEC solves ideal force balance with ideal constraints 
–  GPEC will solve non-ideal force balance with arbitrary jump conditions, which will be 

matched with inner-layer solver 
–  POCA will use 3D perturbations from IPEC, and provide anisotropic pressure tensor to 

GPEC 
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GPEC!

IPEC with arbitrary jump 
conditions at rational surfaces!

IPEC with additional forces at 
irrational surfaces !

IPEC! Anisotropic pressure calculator 
in drift-kinetic regime !

Delta-prime calculator for 
inner-layer physics!


