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Outline
Validation of NTV physics with particle simulation
Prediction of magnetic braking in NSTX-U

Possible application to kinetic potential energy
Future work



NTV physics has been validated using a guiding-center
particle simulation with POCA
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Various braking profiles can be achieved in NSTX-U

« POCA predicts variability of braking profiles by Midplane and NCC

— (Full and/or partial) NCC can provide various braking profiles by n=1 ~ 6, depending on
phases: Consistent to 6B profiles

— Polynomial degree for fitting 6B should be carefully selected in high n (=4,6) cases for
better radial resolution in NTV calculations

— Change target equilibrium and kinetic profiles

Averaged 6B? profile Midplane n=3 NCC n=1 NCC n=3 NCC n=4 NCC n=6
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dW, can be calculated using POCA in NSTX-U

Perturbed magnetic field is given as

8B, W,) = Y, a,,ap,)cos(m® - ng) +b,, @p,)sin(md - ng)
POCA calculates NTV by

__> —> T = ;n<6§[amn sin(m®—ne) —b, cos(m- nQO)]>

Kinetic potential energy drives NTV force

T(p — 2in5WK [J.-K. Park, POP (2011)]
OW calculation with particle simulation is under test

oW, = —%;<6§P[amn cos(m¥ - ne)+b, sin(md - nqo)]>
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Future Work

» Particle simulation will be useful to extensively study NTV transport in
NSTX-U
— Predict broad/steep braking profiles depending on the toroidal mode and coil phase
— Require detailed study on high toroidal mode for local braking
— Change target equilibrium and kinetic profiles

» Kinetic potential energy calculation will be tested
— Compare dWy with MARS-K, MISK, IPEC-PENT, etc.
— Physics verification and validation, application to NSTX-U

« Field line tracing with vacuum and ideal plasma response is available
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Back up
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POCA solves Fokker-Planck equation with guiding-center
orbit equations

« Guiding-center motion is described by Hamiltonian equations of motion

[R.B. White, PFL B (1990)]
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» Of is calculated from Fokker-Planck equation [M.N Rosenbluth, PFL (1972)]
[M. Sasinowski and A.H. Boozer, POP (1997)]
— Fokker-Planck equation is written as
a o - F I : . dinf, df C(f)
. _ Y 24— 22 -C , - ~ 1 M =
= TVt e =CWD f=fuexp(f) =1, A+ f) > =0 7
— Fokker-Planck equation is reduced to df &lnfM ~ dnf,
—=C,(f)=-v -F—
dt P v
— Using local Maxwellian, &f can be obtained from
N U-ed N
fu = 3exp(— T ) —> Af=—[la—n (3 E)l aT]A fdipmpmv AA?
( mt) noy \2 T)Tdy T dy v
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Closed orbits by BH resonances can be found in NSTX

« Bounce-harmonic resonance almost always exist in perturbed tokamaks

— BH resonance always exist in the finite ExB due to Maxwellian energy distribution, and
on every surface due to multi-harmonic magnetic perturbations

— Modified closed orbits, theoretically predicted and numerically reproduced in the simple
configuration, can be also found in the complicated NSTX configuration

— ldentical features in orbit-closing by resonance

Closed orbit (n=1, ¢=1) Closed orbit (n=2, ¢=1) Closed orbit (n=3, ¢=1)
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POCA is being actively applied to experimental analysis

« Perturbed magnetic field spectrum provided by IPEC
— Original IPEC output contains nonphysical peaks at the rational surfaces
— Fitting technique (i.e. Chebyshev polynomials) will be used in POCA as

OB, (,) = Y, a,,(,)cos(mb - ng) +b,, (p,)sin(md —ng) <—  |PEC
OB, (¢ )= E [E a, cos(jcos‘l(x))cos(mH - n(])) +b; Cos(jcos‘l(x)) sin(m@ - n(p) —> POCA

— Fitting follows overall features of IPEC 6B, and effectively smoothes the peaks
NSTX #124439 (6=0.0, ¢=0.0)
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Consistent NTV profile and total NTV was obtained in DIlI-D

n=3 magnetic braking

« Application of POCA to DIllI-D n=3 magnetic braking (in QH mode

experiments) using IPEC 8B gives a consistent NTV
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Prediction of NTV in NSTX can be improved with POCA

« Bounce-harmonic resonances can dominate NTV transport
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Semi-analytic numerical routines in IPEC have been
compared to POCA

» |PEC previously used a reduced large-aspect-ratio NTV formulation with
approximated collision operator : IPEC-RLAR

* Now new formulation and implementation for NTV with general geometry have
been completed : IPEC-PENT

« Computational cost : IPEC-RLAR < IPEC-PENT < POCA
« Accuracy : POCA > IPEC-PENT > IPEC-RLAR (unacceptable for SBP)
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[Logan, To be submitted to POP (2013)]
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Field Line Tracing Simulations for NCC

resonant n=1 by NCC
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«  POCA-FLT supports capability of NCC to
produce various 3D field characteristics

— POCA-FLT predicts modifications of
vacuum stochastic layers for n=1~6

— NCC can provide resonant or less-
resonant fields depending on the phase
but similar NTV braking profile

— Higher toroidal mode supplies stronger
field splitting on the target
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General Perturbed Equilibrium Code (GPEC) is on progress

» Perturbed equilibrium codes are efficient to

study 3D field physics in

tokamaks with non-axisymmetric perturbations

— |PEC solves ideal force balance with ideal constra

— GPEC will solve non-ideal force balance with arbit
matched with inner-layer solver

ints
rary jump conditions, which will be

— POCA will use 3D perturbations from IPEC, and provide anisotropic pressure tensor to

GPEC
[ GPEC ]
7
IPEC with arbitrary jump IPEC with additional forces at
conditions at rational surfaces irrational surfaces

[ Delta-prime calculator for ] [ IPEC

inner-layer physics

Anisotropic pressure calculator
in drift-kinetic regime
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