

Supported by

RWM active control performance analysis using NCC actuators and realistic sensors

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh and J.M Bialek

Department of Applied Physics, Columbia University, New York, NY

NSTX-U NCC Working Group Meeting January 30th, 2015 PPPL

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati **CEA**, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

RWM active control performance analysis using NCC actuators now performed with realistic sensors

Motivation

Past analysis considered several NCC options, compared to present RWM coils, but with idealized sensors

Outline

- Review of RWM active control performance with idealized sensors
- Control performance of NCC using existing sensors
- Control performance of NCC using newly-considered sensors
- Comparison of NCC configurations using best-performing sensors

Review: RWM active control capability increases as partial NCC coils are added (calculations using idealized sensors)

NSTX-U NCC RWM analysis with realistic sensors (S.A. Sabbagh and J.M. Bialek, Columbia U. group)

1/30/15 3

Review: RWM active control capability increases further with full NCC (calculations using idealized sensors)

<u>Review</u>: 3D analysis of extended MHD sensors show significant mode amplitude off-midplane, incl. divertor region

(III) NSTX-U

NSTX-U NCC RWM analysis with realistic sensors (S.A. Sabbagh and J.M. Bialek, Columbia U. group)

Extended RWM sensors proposed – consider some new sensor positions closer to the divertor region

- Motivation: Initial calculations using existing RWM sensors and NCC yielded inferior performance to idealized sensors
- Can new sensor positions improve performance?
 - New positions considered possible from past discussions to extend RWM sensor set

Extensive VALEN calculations of RWM active control performance considered several variations

Configuration variations (all using "full" NSTX-U model)

- Sensor position variations
- Partial and full NCC sets; midplane RWM coils added (or not)
- **D** NOTE: "intermediate β_N " equilibrium used
 - Higher β_N equilibrium shows greater mode amplitude deeper into divertor region (in poloidal angle), but control must work over full range of β_N

Feedback parameter variations

- Feedback phase scans
- Feedback gain scans
- "Smart shell" and "active control" analyses
 - The latter implements sensor compensation of the applied 3D field

Extensive combinations of sensors and actuators, feedback phases and gains

Will only summarize "best" performance to compare configurations

🔘 NSTX-U

Existing RWM sensors (Bottom B_p) driving Midplane RWM coils: calculation used for comparison

Existing RWM sensors (Bottom B_p) driving upper NCC: sensors sufficiently decoupled from induced wall currents

Sensors

 Present RWM sensors (bottom B_p), compensated

Actuators

Top NCC coils (1x12)

Performance

- Superior to midplane RWM coils by $\Delta\beta_N \sim 0.5$
- Uncompensated sensor results similar (bottom B_p driving upper NCC)
- <u>BUT</u>: Present RWM sensors driving neighboring NCC results in decreased performance – consider new sensor positions

Proposed "B position" sensors in upper divertor driving midplane RWM coils close to present system performance

Proposed "B position" sensors in upper divertor driving upper & lower NCC significantly improves performance

Proposed "B position" sensors in upper divertor driving upper & lower NCC and midplane RWM coils also works well

Sensors

Top B_p, position B; compensated

Actuators

 Top and bottom NCC (2x12), and RWM coils

Performance

- Uncompensated sensor results similar
- Slightly inferior performance to upper/lower NCC alone (Δβ_N ~ -0.1)
- In reality, w/midplane coil may be superior if mode "bulges" (Sabbagh, PRL 2006)

The other potential "new" sensors (Positions C and D) tested are inferior to the "B position" sensor results

(I) NSTX-U

Proposed "B position" sensors in upper divertor driving "odd parity" partial NCC set also shows has good performance

Proposed "B position" sensors in upper divertor driving "even parity" partial NCC set shows identical performance

Positions have been found for new RWM sensors to allow superior RWM feedback performance with NCC

- Past result: Active RWM control calculations showed superior performance to RWM coils with NCC and idealized sensors
- Issue: Further calculations showed existing RWM B_p sensors driving neighboring NCC coils yielded relatively poor performance

Present calculations

- □ Existing RWM B_p sensors driving NCC on the opposite side of the midplane can improve feedback performance ($\Delta\beta_N \sim +0.5$)
- □ Sensors in correct positions near the divertor plates driving the full 2x12 NCC yield significant performance improvement ($\Delta\beta_N \sim +1.25$)
- □ Partial NCC (2x6) also show significant performance improvements: (odd, or even parity options yield $\Delta\beta_N \sim +0.9$)