

Supported by

York U

NIFS

JAEA

TRINITI

NFRI

KAIST

ASIPP

Updates for NCC Working Group

NCC WG goals and deliverables

- Deliverables (by April 2015):
 - Give presentation making recommendations on NCC and SPA performance requirements, gather and incorporate team input
 - Generate written report (5-20pp Word file) documenting NCC and SPA requirements for use in developing engineering requirements document (GRD) to drive engineering design
- Charges:
 - Specify required coil current, frequency, and location for NCC
 - Consider full set (24 coils) and partial set (12 coils)
 - Consider range of applications: NTV, EFC, RWM, RMP, ELM pacing, etc...
 - Specify required number of independent SPA channels vs. applications and requested capabilities

Key questions

• Partial NCC odd vs. even vs. Full NCC

- <u>1 turn vs. 2 turns (3kAt or 6kAt?)</u>
 - 1 turn is much more preferred in engineering
- # of SPAs recommended
- Answers can be different whether
 - NCC is considered alone and compared to midplane coil
 - NCC + midplane is fully considered for optimization

Physics analysis with partial/full NCC options

- Two equilibrium targets + TRANSP kinetic profiles were used
- Figures of merit were defined for EF, RWM, NTV, RMP, and analyzed using readily available tools (IPEC, PENT, VALEN3D, TRIP3D, POCA) for <u>NCC alone, compared to midplane alone</u>

Figures of Merit	Favorable values	MID	12U	2x6-Odd	2x12
EF (n=1) $F_{N-R} = \frac{T_{NTV}}{\sum_{\psi_N < 0.85} \delta B_{mn}^2}$	High F _{N-R}	0.07	0.13	1.24	1.24
RWM (n=1) $F_{\beta} = \frac{\beta_{active}}{\beta_{no-wall}}$	High F _β	1.25	1.54	1.61	1.70
NTV (n \geq 3) $\Delta \left(F_{N-N} = \frac{T_{NTV}(\psi_N < 0.5)}{T_{NTV}(\psi_N < 1)} \right)$	Wide ΔF_{N-N}	1.00	1.44~6.08	1.75~11.33	6.38~59.4
RMP (n \geq 3) $F_{N-C} = \frac{(C_{vactuum,\psi_N=0.85})^4}{T_{NTV}}$	High F _{N-C}	0.25~0.30	0.31~1.04	0.43~0.77	1.18~3.53
	Wide ΔF_{N-C}	1.00	2.20~12.3	10.4~17.4	888~14400

For n=1 NTV/RMP: Roughly Partial 2 turns = Full 1 turn

 Partial NCC can drive the same n=1 field as full NCC if coil currents are doubled

- Full NCC 1 turn < 1 Nm
- Upper/Mid/Lower ~ 3:2:3
- Partial NCC 1 turn < 0.3 Nm
- Upper/Mid/Lower ~ 6:2:6

For n=6 NTV/RMP: Partial 2 turns = Full 1 turn

 Partial NCC can drive the same n=6 field as full NCC if coil currents are doubled

For n=3 NTV : Full NCC provides great capability for core NTV while minimizing all the resonant fields

- IPECOPT shows full NCC can be optimized to drive core NTV while minimizing all the resonant fields at the rational surfaces
 - Optimized field is almost orthogonal to field lines
 - Plasma is almost transparent to this field

For n=3 NTV : Partial NCC can also provide good core NTV but with 4 times greater coil currents

- In the optimization of partial NCC, not all three array of coils are well utilized
 - With 'odd' option: Upper (or lower) coils are not used
 - With 'even' option: Midplane coils are weakly used
- Odd NCC 1 turn < 1 Nm
- Upper/Mid/Lower ~ 0:2:3

- Even NCC 1 turn < 1 Nm
- Upper/Mid/Lower ~ 3:2:3

Kinetic plasma response is coupling characteristics similar to fluid response for n=1

- MARSK applications show the similar characteristics on
 - Relative change in the response compared to midplane coil
 - Coupling vs. phase remains similar
- NCC utility analysis based on ideal MHD may be a reasonably good approximation

High rotation $\omega = 0.1 \omega_{\Delta}$

Kinetic response is however richer for internal structure especially when NCC is used

- MARSK shows up-down asymmetric structure for internal displacements when NCC is used, differently from midplane coil
 - Partial or full NCC can be used to study this interesting predictions

Discussion and plans

- Need inputs by April 3rd to finalize "draft of recommendation"
 - Partial NCC odd vs. even vs. Full NCC
 - Maximum currents, or threshold/currents required
 - NTV (Nm/kA), RMP (Chirikov/kA), Stability (Ballooning region/kA)
 - # of SPAs if any
- J.-K will collect analysis from group, and present summary of physics analysis activity and draft of recommendation in the week after April 3rd
 - Gather feedback from group and team
 - Write the written report for GRD (or paper)