

Supported by

NSTX-U 5 Year Plan for Macroscopic Stability

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U Nova Photonics **Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J. Berkery (Columbia University)

J.-K. Park, A. Boozer, S.A. Sabbagh, S. Gerhardt, R. Raman, J.M. Bialek, K. Kim, J. Menard for the NSTX Research Team

> **NSTX-U 5 Year Plan Review** LSB B318, PPPL May 21-23, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI **Chonbuk Natl U** NFR KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Macroscopic stability group will provide the physics basis for long-pulse sustainment

- Uniqueness of NSTX/NSTX-U:
 - high β above no-wall limit, high Stabilizer
 rotation with strong NTV braking plates
- Accomplishments in NSTX:
 - EF correction; RWM active control
 - Comparison of kinetic RWM stabilization theory to experiments
 - NTV physics for magnetic braking
 - Disruption prediction algorithm and halo current measurements
- Midplane control coils
 - n = 1 3 error field correction
 - Magnetic braking of ω_{ϕ} by NTV
 - n = 1 active RWM control with: combined B_r and B_p PID control or model-based RWM state-space (RWMSC) active control

Overall objective: establish the physics and control capabilities needed for sustained stability of high performance ST plasmas

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- Thrust 1, <u>Stability</u>:
 - Understand and advance passive and active feedback control to sustain macroscopic stability at low collisionality

• Thrust 2, <u>3D Fields</u>:

- Understand 3D field effects and provide physics basis for optimizing stability through equilibrium profile control by 3D fields
- Thrust 3, <u>Disruptions</u>:
 - Understand disruption dynamics and develop techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas

Overall objective: establish the physics and control capabilities needed for sustained stability of high performance ST plasmas

- Thrust 1, <u>Stability</u>:
 - Understand and advance passive and active feedback control to sustain macroscopic stability at low collisionality
 - Resistive wall mode (RWM) active control
 - New non-axisymmetric control coils (NCC) and enhanced magnetic sensors
 - MHD mode stability physics
- Thrust 2, <u>3D Fields</u>:
 - Understand 3D field effects and provide physics basis for optimizing stability through equilibrium profile control by 3D fields
- Thrust 3, <u>Disruptions</u>:
 - Understand disruption dynamics and develop techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas

Dual-component PID ($B_r + B_p$) and model-based RWM state-space (RWMSC) active control will enable long pulse, high β operation

- Year 1 of 5 year plan (2014):
 - Expand/analyze RWMSC for 6 coil control and n>1 physics
- Years 2 & 3:
 - Establish B_r + B_p active control capability in new machine, use with snowflake divertor
 - Examine RWMSC with:
 - independent actuation of six coils
 - multi-mode control with n up to 3
 - rotational stabilization in the model

(D) NSTX-U

 Utilize model-based active control with the new NCC to demonstrate improved global MHD mode stability and very low plasma disruptivity, producing highest-performance, longest-pulse plasmas

NCC will greatly enhance physics studies and control; Enhanced magnetics near divertor will measure multi-modes

• Years 4 & 5:

Partial NCC

Existing coils

- Implement improvements to active feedback of n =1-3 modes via RWMSC control allowed by the partial NCC
- Utilize rotation profile control capabilities allowed by the partial NCC to demonstrate reduced disruptivity by actively avoiding global instability boundaries

(Next talk by Park will concentrate on NCC)

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

MHD spectroscopy shows improved stability at high β_N/I_i ; kinetic RWM stability may be enhanced at low v

- Mode stability directly measured in experiment using MHD spectroscopy
 - Decreases up to $\beta_N/l_i = 10$ then increases at higher β_N/l_i
 - Agrees with larger NSTX disruption database

- Investigate the dependence of stability on reduced v through MHD spectroscopy; compare to kinetic stabilization theory
- Years 4 & 5:
 - Utilize rotation control, NCC, and cryopump (for reduced v) to change proximity to kinetic resonances for RWM control

Realizing NSTX-U long-pulse scenarios will require stability of internal MHD modes

- Years 2 & 3:
 - Use new neutral beam and q_{min} control to determine increment of q_{min} above rational values to avoid internal modes
 - Detect internal modes with RWMSC and non-magnetically with ME-SXR
- Years 4 & 5:
 - Examine time-evolution of global mode internalization using newlyinstalled, additional toroidally-displaced ME-SXR diagnostic
 - Combine rotation, q, and β_N control to demonstrate improved RWM/internal MHD mode stability

Overall objective: establish the physics and control capabilities needed for sustained stability of high performance ST plasmas

- Thrust 1, <u>Stability</u>:
 - Understand and advance passive and active feedback control to sustain macroscopic stability at low collisionality
- Thrust 2, <u>3D Fields</u>:
 - Understand 3D field effects and provide physics basis for optimizing stability through equilibrium profile control by 3D fields
 - Error field (EF) correction
 - Locking and tearing modes with resonant and non-resonant Efs
 - Tearing mode physics vs. rotation and rotation shear
 - Neoclassical toroidal viscosity
- Thrust 3, <u>Disruptions</u>:
 - Understand disruption dynamics and develop techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas

Correction of intrinsic error fields (EFs) is critical for performance; Resonant and non-resonant EFs affect locking and tearing stability

- Year 1:
 - Use IPEC to model EFs
- Years 2 & 3:
 - Assess intrinsic EFs in new machine
 - Optimize dynamic EF correction, including n>1 and using 6 SPAs and RWMSC
 - Investigate resonant EF effects on tearing mode onset
- Years 4 & 5:
 - Utilize NCC to understand locking and tearing modes in the presence of resonant and non-resonant EFs
 - develop predictability for ITER

Dynamic error field correction in NSTX

Resonant error field threshold vs. locking density (IPEC) for five devices

NSTX-U will investigate tearing mode physics vs. rotation and rotation shear

- Year 1:
 - Analyze NSTX TM/NTMs, project to NSTX-U with resistive DCON, MARS-K, M3D-C1
- Years 2 & 3:
 - Investigate the rotation and rotational shear vs. TM/NTM in NSTX-U, compared with NSTX
 - Investigate the β limit for TM/NTM onsets with varied rotation and rotation-shear
- Years 4 & 5:
 - Use the partial NCC and the 2^{nd} NBI beam to study TM/NTM dynamics as a function of (β_N, v_{ϕ})
 - develop predictability for ITER

q=2 Alfvén Mach number

NSTX-U will investigate neoclassical toroidal viscosity (NTV) at reduced v, which is important for rotation control and ITER

- Year 1:
 - Analyze existing NSTX NTV data on ν dependence and offset rotation
 - Develop/benchmark leading theory/codes
 - NTVTOK, IPEC, POCA, FORTEC-3D
- Years 2 & 3:
 - Assess NTV profile and strength at reduced collisionality, and examine the NTV offset rotation at long pulse
 - Prepare an initial real-time model of NTV profile for use in initial tests of the plasma rotation control system
- Years 4 & 5:
 - Utilize NCC, demonstrate low rotation profile operation (ITER-like) in steadystate with closed-loop rotation control

Overall objective: establish the physics and control capabilities needed for sustained stability of high performance ST plasmas

- Thrust 1, <u>Stability</u>:
 - Understand and advance passive and active feedback control to sustain macroscopic stability at low collisionality
- Thrust 2, <u>3D Fields</u>:
 - Understand 3D field effects and provide physics basis for optimizing stability through equilibrium profile control by 3D fields
- Thrust 3, <u>Disruptions</u>:
 - Understand disruption dynamics and develop techniques for disruption prediction, avoidance, and mitigation in high-performance ST plasmas
 - Prediction and avoidance
 - Mitigation with MGI
 - Transient heat loads and halo currents

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI (1)

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI (2)

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

Disruption prediction by multiple means will enable avoidance via profile or mode control or mitigation by MGI (3)

• Year 1: **<u>Pre</u>**

Predictors

- Evaluate initial simple physics model for marginal stability based on kinetic stability physics
- Years 2 & 3:
 - Measure plasma stability using MHD spectroscopy vs. key variables and compare to theory
 - Compare the mismatch between the RWMSC observer model and sensor measurements, and disruption occurrence
- Years 4 & 5:
 - Implement real-time evaluations of: kinetic stability model, MHD spectroscopy, and RWMSC observer disruption prediction for input to profile control algorithms

Year 1:

<u>Mitigation</u>

- Model neutral gas penetration of SOL
- Years 2 & 3:
 - Commission MGI system
 - Characterize density assimilation vs. poloidal location
- Years 4 & 5:
 - Utilize EPI system
 - Trigger the MGI system based on warning of an impending disruption

NSTX-U will provide projections of transient heat loads and halo currents for ITER and FNSF

- Year 1:
 - Examine thermal loading projections for ITER, including assumptions of axisymmetry
- Years 2 & 3:
 - Investigate halo current toroidal asymmetry and loading on the center column, using newly installed center column shunt tiles
 - Upgrade shunt tile diagnostics for complete coverage of divertor
 - Study spatial extent and timing of the heat deposition during VDEs
- Years 4 & 5:
 - Assess halo current scalings using the full field and current capabilities
 - Study 3D and non-axisymmetric effects on the divertor heat loading

New diagnostic: high-speed IR thermography (ORNL)

ITER high priority item: ITER has vessel resonances at frequencies of rotating halo currents

NSTX-U

Summary of NSTX-U 5 year plan for Macroscopic Stability

- MS research is establishing the physics understanding and control capabilities needed for sustained stability of high performance ST plasmas
 - In unexplored ST operational regime: low v, high β , low I_i , long pulse
- NSTX-U will make critical contributions in the areas of:
 - Advancement of stability physics and control to sustain macroscopic stability at low collisionality
 - Understanding 3D field effects and providing the physics basis for profile control by 3D fields
 - Understanding disruption dynamics and developing techniques for disruption prediction, avoidance, and mitigation
- MS research in NSTX-U will be greatly enriched, and have significantly greater impact on ITER, by having the NCC coils

Backup

NSTX-U macroscopic stability research is directly coupled to ITER through the ITPA

- Through the experimental outage, our group:
 - Maintains contributions to five joint experiments and two working groups
 - leads the MDC-2 joint experiment / analysis on RWM physics
 - co-leads the Working Group 7 effort on aspects of active mode control

	MHD		
MDC-2	Joint experiments on resistive wall mode physics	MDC-17	Active disruption avoidance
MDC-8	Current drive prevention/stabilization of NTMs	MDC-18	Evaluation of axisymmetric control aspects
MDC-15	Disruption database development	MDC-21	Global mode stabilization for disruption prediction and avoidance (proposed)

- Communicated NSTX research bi-annually at each ITPA MHD Stability group meeting for many years
- Led two elements of the recent ITPA Integrated Plasma Control Working Group study, led by Dr. Joseph Snipes of ITER
 - also contributed with direct calculations for ITER on RWM and error field control associated with this effort.
- NSTX-U stability research plans expand this effort in the coming five year period.

Dual component (B_R, B_p) PID and state space control

WNSTX-U

NSTX-U 5 Year Plan Review - Macroscopic Stability (Berkery)

t (s)

RWM active control capability increases as partial NCC coils are added

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

RWM active control capability increases further with full NCC

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

Multi-mode theory shows high amplitude near divertor, enhanced magnetics proposed

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

3D analysis of extended MHD sensors show significant mode amplitude off-midplane, approaching divertor region

NSTX-U 5 Year Plan Review - Macroscopic Stability (Berkery)

May 21-23, 2013 25

Stability control improvements significantly reduce unstable RWMs at low I_i and high β_N ; improved stability at high β_N/I_i

- Disruption probability reduced by a factor of 3 on controlled experiments
 - Reached 2 times computed n = 1 no-wall limit of $\beta_N/l_i = 6.7$
- Lower probability of unstable RWMs at high β_N/I_i

- Mode stability directly measured in experiments using MHD spectroscopy
 - Stability decreases up to $\beta_N/I_i = 10$
 - Stability increases at higher β_N/I_i
 - Presently analysis indicates consistency with kinetic resonance stabilization

Internal modes may limit long-pulse scenarios; kinetic RWM stability may be enhanced at low v

Internal kink/ballooning modes must be measured via non-magnetic means

- Non-magnetic measurement is also important for mode control systems to be used in future devices with high neutron fluence
- The RWMSC can determine how incorrect the observer is in reproducing the measured magnetic flux
 - Can be used as a criterion as input to a disruption warning system.
- Multi-energy soft Xray can measure low a) Be 10 μ m, E_c~1170.2 eV frequency mode CORE ~25 Hz 2.0 activity SXR emissivity (Arb.) 100 Radius (cm) - used to determine mode H-mode amplitude and in densit 120 conjunction with the external magnetic 100 140 600 sensors to determine 400 500 600 700 Radius (cm) 500 Time (ms) 140 400 Time (ms) the degree to which the

mode is internal

Understanding neoclassical toroidal viscosity (NTV) is crucial for rotation control

(D) NSTX-U

R(12-1)

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

Correction of intrinsic error fields is critical for studies of 3D field physics and for performance

- Dynamic error field correction (green)
 - $\begin{array}{l} \hspace{0.1 cm} \text{sustains} \hspace{0.1 cm} \beta_{\text{N}} \hspace{0.1 cm} \text{above} \\ \text{the no-wall limit} \end{array}$
 - sustains substantial toroidal rotation
- NSTX-U will have a different error field
 - Identification of error field in first year of operation
 - measure vacuum fields; revise models
 - Perform n=1,2
 compass scans with
 6 independent
 SPAs.
 - RWMSC for dynamic error field correction

Disruption mitigation technologies that will benefit the ITER design are being prepared

MGI research will assess gas penetration efficiency by injection at different poloidal locations

- NSTX-U can offer new insight by
 - Reducing the amount of gas
 - Injecting gas into the private flux and lower xpoint regions of divertor to determine if these are more desirable locations for MGI.

A novel mitigation technology, an electromagnetic particle injector (EPI), will be used to terminate plasmas

- The EPI is capable of delivering:
 - A large particle inventory
 - All particles at nearly the same time
 - Particles tailored to contain multiple elements in different fractions and sizes
 - Tailored particles fully ionized only in higher current discharges (to control current quench rates)
- Well suited for long stand-by mode operation

Understanding of thermal quench physics and transient heat loads is critical for projections

🔘 NSTX-U

NSTX-U 5 Year Plan Review - Macroscopic Stability (Berkery)

Disruptivity studies and warning analysis of NSTX database are being conducted for disruption avoidance in NSTX-U

Warning Algorithms

- Disruption warning algorithm shows high probability of success
 - Based on combinations of single threshold based tests

Results

- ~ 98% disruptions flagged with at least 10ms warning, ~ 6% false positives
- False positive count dominated by near-disruptive events

MS group continues strong collaborations with other devices such as KSTAR, DIII-D, and ITER team

Many important computational codes are used for theoryexperiment comparison on NSTX-U

Code	Description	Scope	Improvements
VALEN	Models currents in structures with thin shell finite elements	RWM active feedback simulation, growth rate prediction with 3D walls	Multi-mode effects, study extra time delay in plasma model
RWMSC	Resistive wall mode state-space controller computations	Generate control matrices for real- time controller, and offline physics studies	Generalization for partial actuator availability, n > 1 and multi-mode spectrum
NTVTOK	Shaing theory NTV computation including ion and electron effects	Calculation for comparison to experiment of NTV in all collisionality regimes	Continued implementation of NTV models, guided by experiment
DCON	Ideal MHD stability code	Ideal Kink stability analysis with and without the wall up to n=6	Resistive layer physics across rational surfaces (Resistive DCON)
MISK	Modifications to ideal stability by kinetic effects	Calculation of resistive wall mode stability	Improved model of energetic particle, anisotropy effects
DEGAS-2	Monte Carlo code to compute transport of neutral atoms	Calculation of neutral gas penetration through SOL	Include multiple gas species Use exact NSTX-U SOL conditions from UEDGE
EFIT	Equilibrium reconstruction code	Between-shots equilibrium reconstruction	Higher resolution, auto best level, new diagnostics
IPEC/GPEC	Ideal and general perturbed equilibrium with 3D fields	Plasma response, locking, and NTV studies with 3D fields	General force balance equation including general jump conditions
MARS-K	Self-consistent kinetic stability calculation	Calculation of RWM stability and plasma response to perturbation	Inclusion of energy dependent collisionality for NTV calculation
M3D-C ¹	Implicit resistive and 2-fluid MHD code	Linear and nonlinear MHD stability	Neoclassical terms, resistive wall being added
FORTEC-3D	Monte-Carlo drift-kinetic physics simulation code	Non-ambipolar transport and NTV physics in general geometry	Continued integration with IPEC and application to NSTX-U
POCA	δf guiding-center orbit code	Calculation of neoclassical transport, perturbed pressures and NTV	Improved numerical scheme to enhance computation speed

(III) NSTX-U

Many important computational codes are used for theoryexperiment comparison on NSTX-U

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)

2014-18 Macroscopic Stability Research Timeline

NSTX-U 5 Year Plan Review – Macroscopic Stability (Berkery)