

Supported by

NSTX-U 5 Year Plan for Non-axisymmetric Control Coil (NCC) Applications

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J.-K. Park,

J. W. Berkery, A. H. Boozer, J. M. Bialek, S. A. Sabbagh, J. M. Canik, K. Kim, R. Maingi, T. E. Evans, S. P. Gerhardt, J. E. Menard for the NSTX Research Team

> NSTX-U 5 Year Plan Review LSB B318, PPPL May 21-23, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Motivation: Expanded 3D field capability on NSTX-U is essential to meet NSTX-U programmatic/TSG goals, and support ITER

• Expanded 3D field capability needed to control error fields, RWMs, momentum (rotation), particle/heat transport, ELM control, etc.

🔘 NSTX-U

NSTX-U 5 Year Plan Review – NCC (Park)

Outline

- Proposed NCC geometry for NSTX-U
 - Partial and full choices for NCC
- Physics analysis and NCC applications
 - Resonant and non-resonant error field control
 - RWM active control
 - Rotation control via NTV
 - RMP characteristics for stochastic and neoclassical transport
 - RMP characteristics for 3D stability
- Summary
 - Coil performance comparison table
- Future plan for analysis

3

A range of off-midplane NCC coil configurations is being assessed for potential physics capabilities

- NCC proposal: Use two off-midplane rows of 12 coils toroidally
 - To produce wide poloidal spectrum to vary resonant vs. non-resonant coupling
 - To rotate n=1 4 fields to diagnose plasma response such as heat flux spreading in divertor
 - Poloidal positions of 2x12 coils have been selected based on initial studies
- Partial NCCs are also under active investigation
 - Anticipate possible staged installation to the full 2x12
 - 3 best options will be discussed and compared with existing midplane coils

Existing **Midplane coils**

NCC Options

Wide variation of n=1 non-resonant vs. resonant field made possible by NCC

- IPEC and combined NTV analysis show that 2x6-Odd partial NCC and 2x12 full NCC can provide range of non-resonant error field control while minimizing n=1 resonant error field, which is a critical issue for tokamaks
- Non-resonant field physics can be quantified by NTV, via $F_{N-R} \equiv \frac{T_{NTV}}{\sum \delta B_{mn}^2}$

– High F_{N-R} as well as its variability are important

* Combinations of midplane coils with NCC are partially tested and shown in backup slides

5

 $\psi_N < 0.85$

RWM control capability increases and physics studies are expanded with NCC

- VALEN3D analysis shows RWM control performance increases as NCC coils are added
 - Can operate very close to the ideal-wall limit with full 2x12 NCC

6

NCCs greatly expand possible resonant field profiles for similar n=3 NTV braking – will aid understanding of RMP

Phase of NCC can control resonant profile width

• Full NCC can further enhance variability of NTV across radius to control rotation and shear, and thus microscopic-to-macroscopic instabilities (backup slides)

NTV at fixed Chirikov can be varied by 1 order of magnitude with partial NCC, 2 orders of magnitude with full NCC

- Empirical RMP characteristics: Chirikov overlap and pitch-alignment
 - Chirikov overlap implies dominant stochastic transport in the edge
 - Good pitch-alignment implies small non-resonant fields, which are related to small neoclassical 3D transport (NTV) in the core $(C_{vacuum,\psi_N=0.85})^{r}$
 - These mixed hypothesis can be quantified by $F_{N-C} = -$

RMP Figure-Of-Merit

8

Field line tracing calculations show vacuum stochastic layers can be substantially modified by NCC

 POCA-FLT simulations for NCCs show important modifications of vacuum stochastic layers for both n=1 and n=3

• Although the vacuum hypothesis may not be precise even in the edge, these predictions can be tested in NSTX-U for ELM control and compared with divertor diagnostics for particle and heat splitting

Stability analysis using stellarator tools indicates 3D equilibrium effects are important for pedestal ballooning instability

- Midplane coil applications in NSTX showed strong ELM triggering and pacing
- VMEC+COBRA analysis for NSTX-U shows NCCs may significantly increase this capability
 - NCCs can broaden ballooning unstable region by ~30% compared to midplane coils or 2D (benchmarked with BALL)

10

ISOLVER+VMEC+COBRA $\Psi_{\rm N} = 0.903$

5.0

4.5

4.0

3.5

0.38

0.31

0.24

0.17

Summary of initial analysis

- For partial NCCs, 2x6-Odd is more favorable than 12U for error field, RWM control, rotation control, and RMP characteristics
 - 12U can provide high-n rotating capability, but poloidal spectrum is limited
- Full NCC greatly expands capability for NTV and RMP physics and control
- Quantified FOM table:

Figures of Merit	Favorable values	MID	12U	2x6-Odd	2x12
EF (n=1)	High F _{N-R}	0.017	0.025	0.13	0.13
RWM (n=1)	High F _β	1.25	1.54	1.61	1.70
NTV (n≥3)	Wide ΔF_{N-N}	1.00	2.00	3.97	19.6
RMP (n≥3)	High F _{N-C}	3.92	41.3	51.3	201
	Wide ΔF_{N-C}	1.00	10.5	22.1	252

* Figures of merit for NTV is defined and illustrated in backup slides

Analysis plans for upcoming year

- Additional configurations will be investigated
 - Combine NCC and midplane, including different Ampere-turn ratios, and with constraint of only 6 independent power supplies
 - Various target plasmas with different $\ensuremath{q_{\text{min}}}$ and q-shear
- Important coil configurations will be identified using FOMs, with varied collisionality and rotation
 - IPEC-NTV, MISK, MARSK, MARSQ, NTVTOK, VALEN3D, TRIP3D will be used to quantify error field, NTV, RWM, RMP characteristics
 - SVD methods with FOM matrices, with and without coil constraints, will also be performed to assess fundamental advantages of NCCs in NSTX-U
- Advanced computations will be performed for selected coil configurations, target plasmas, kinetic profiles
 - POCA, FORTEC3D, and XGC0 will be used for selected cases

Backup

Partial NCCs combined with midplane coils can greatly extend selectivity of n=1 resonant vs. non-resonant field

- Partial NCCs, if combined with midplane coils, can greatly extend "nonresonant" and "resonant field selectivity" by changing alignment between fields to resonant helical pitch
- RMP FOM can be also further increased or decreased
 - Particularly 2x6 is essential to decrease torque/dB₂₁², and thus increase "resonant field selectivity", and also to decrease torque per Chirikov
- Optimized currents are expected to further improve n=1 capability

*All coils are in the same currents (1kAt is the base) and ratio is not optimized

Controllability of rotation by NTV braking can be enhanced by 2x12, and also by mixed n's

- Semi-analytic calculations show that full NCC can greatly enhance variability of NTV across radius, which is essential to control rotation profiles and shear, and therefore microscopic-to-macroscopic instabilities
 - NTV variability for core to edge can be defined as $\Delta \left(F_{N-N} \equiv \frac{T_{NTV}(\psi_N < 0.5)}{T_{NTV}(\psi_N < 1)} \right)$

 n=1 non-resonant error fields, if successfully utilized, can further increase NTV profile control

