

Supported by

NSTX-U 5 Year Plan for Pedestal, Scrape-off Layer and Divertor Physics

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

V. A. Soukhanovskii (LLNL),

A. Diallo, R. Maingi, C. S. Chang (PPPL), and J. Canik (ORNL), for the NSTX-U Research Team

> NSTX-U 5 Year Plan Review LSB B318, PPPL May 21-23, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

Boundary Physics Program provides broad support for the NSTX-U 5 year plan goals

- Demonstrate 100% non-inductive sustainment at performance that extrapolates to ≥ 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion snowflake divertor and radiative detachment for mitigating high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

Longer-term (5-10 year) goal:

Integrate 100% non-inductive + high β and τ_{E} + divertor solution + metal walls

Boundary Physics program in NSTX-U contributes to critical research areas for FNSF and ITER

Boundary Physics Thrusts (and outline of the talk)

- BP-1: Assess and control pedestal structure, edge transport and stability
 - Pedestal structure, transport and turbulence studies
 - ELM characterization and control

BP-2: Assess and control divertor heat and particle fluxes

- SOL transport and turbulence, impurity transport
- Divertor heat flux mitigation with impurity seeding and divertor geometry
- BP-3: Establish and compare long-pulse particle control methods
 - Validate cryo-pump physics design, assess density control and recycling
 - Compare cryo to lithium coatings for particle (collisionality) control

Boundary Physics program in NSTX-U contributes to critical research areas for FNSF and ITER

Boundary Physics Thrusts (and outline of the talk)

- BP-1: Assess and control pedestal structure, edge transport and stability
 - Pedestal structure, transport and turbulence studies
 - ELM characterization and control
- BP-2: Assess and control divertor heat and particle fluxes
 - SOL transport and turbulence, impurity transport
 - Divertor heat flux mitigation with impurity seeding and divertor geometry
- BP-3: Establish and compare long-pulse particle control methods
 - Validate cryo-pump physics design, assess density control and recycling
 - Compare cryo to lithium coatings for particle (collisionality) control

Pedestal studies focus on instabilities and turbulence that Imit pedestal heights, widths, and gradients

- Peeling ballooning limits on pedestal height and width consistent with ELMy/ELM-free operation
 - Lithium and 3-D fields used to manipulate profiles
- Kinetic ballooning mode (KBM) being tested as a mechanism to limit pressure gradient (width and height)
 - Scaling with β_{pol}^{ped} stronger in STs than higher R/a
 - No evidence yet of KBM fluctuation

Diagnostics:

30 point core Thomson (NSTX) \rightarrow 42 point (NSTX-U)

NSTX-U will extend understanding of different microinstabilities and their role for pedestal control

NSTX-U will focus on developing small / acceptable ELM regimes, and active ELM and pedestal control

- Many ELM type regimes observed in NSTX: Type I, II, III, V, mixed
 - Phenomenology dependent on v_{ped}^* , P_{SOL}, I_{p.} shaping
- Pedestal and ELM control techniques
 - Lithium evaporation
 - In NSTX, reduced p' and edge bootstrap current
 - Lithium granule injector (tested at EAST)
 - Enhanced Pedestal (ELM-free) H-mode
 - 3-D fields
 - In NSTX, n=3 RMP destabilized ELMs (but weak impact on transport)
 - In NSTX-U, NCC coils
 - Wider spectrum, wider ballooning unstable edge region

Plans for pedestal transport, turbulence, and ELM control research

- Year 1 of 5 Year Plan
 - Continue cross-machine comparison of pedestal structure with DIII-D and Alcator C-Mod
 - Continue gyro-kinetic modeling of electromagnetic turbulence
- Years 2-3 of 5 Year Plan
 - Assess the L-H power threshold at higher Ip
 - Pedestal structure and turbulence vs engineering and physics parameters
 - ELM control with lithium coatings, lithium granule injector, and 3D fields
 - Access to new operational regimes (enhanced pedestal H-mode, I-mode)
 - Initiate assessment of SOL current generation and impact on ELM models and control
 - Incremental: begin to design and construct power supplies to drive EHOs
- Years 4-5 of 5 Year Plan
 - Compare effect of cryopumping and high-Z PFCs on pedestal structure and turbulence
 - Edge transport and ELM stability with NCC coils, comp. with gyro-kinetic calculations
 - Combine the new particle control tools (cryopump and LGI) to trigger ELMs

Diagnostics: MPTS, CHERS, BES, reflectometry, GPI

Boundary Physics program in NSTX-U contributes to critical research areas for FNSF and ITER

Boundary Physics Thrusts (and outline of the talk)

- BP-1: Assess and control pedestal structure, edge transport and stability
 - Pedestal structure, transport and turbulence studies
 - ELM characterization and control

BP-2: Assess and control divertor heat and particle fluxes

- SOL transport and turbulence, impurity transport
- Divertor heat flux mitigation with impurity seeding and divertor geometry
- BP-3: Establish and compare long-pulse particle control methods
 - Validate cryo-pump physics design, assess density control and recycling
 - Compare cryo to lithium coatings for particle (collisionality) control

NSTX-U will help reduce SOL width scaling uncertainties for next-steps and assess relative importance of turbulent and drift-based transport

- BP-2
 - SOL width scaling critical for divertor projections
 - In NSTX: $\lambda_q^{mid} \sim I_p^{-1.6}$, independent of P_{SOL} and B_t
 - For NSTX-U (2 MA): $\lambda_a^{mid} = 3\pm0.5 \text{ mm}$
 - - λ_{a}^{mid} (mm) = (0.63+/-0.08) x B_{pol.MP}^{-1.19}
 - For NSTX-U (B_p~0.55 T): λ_q^{mid} ~ 1.3 mm
 - Comparison of λ_{SOL} with SOL models
 - Parallel transport: conductive/convective, cross-field : collisional / turbulent / drift
 - Goldston heuristic drift-based model
 - $\lambda_{SOI} \sim (2a/R) \rho_{\theta}$ for NSTX-U: $\lambda_{\alpha}^{mid} \sim 6 \text{ mm}$
 - XGC0 (drift-kinetic): $\lambda_q^{mid} \sim I_p^{-1.0}$ at lower I_p
 - SOLT (fluid turbulence): I_p scaling is weaker than observed
 - Comparison of GPI, BES data and SOL transport and 200 turbulence simulations 150 Blobs
 - Blob formation, motion, interaction with sheared flows
 - Role of magnetic X-point geometry and finite ion gyro width
 - Effects of 3-D fields on turbulence

Standard and snowflake divertor geometries will be combined with radiation for heat flux mitigation and detachment studies

- Radiative divertor and snowflake geometry successfully applied in NSTX for heat flux mitigation in high-performance H-modes
 - Peak divertor heat flux reduced from 6-12 MW/m² to 1-2 MW/m² while maintaining H98(y,2)~1
 - In snowflake geometry, heat flux reduced during Type I ELMs
- Snowflake divertor configuration
 - Second-order null ($B_p \sim 0$ and grad $B_p \sim 0$)
 - Predicted divertor and pedestal properties confirmed in TCV, NSTX, and DIII-D
- Outstanding questions
 - Real-time magnetic control
 - Snowflake variants, up-down symmetric snowflake
 - Pedestal and ELM stability
 - SOL transport and turbulence
 - Flux tube squeezing effects, X-point transport and drifts
 - β-dependent heat transport
 - Compatibility with particle control and high-Z PFCs
 - Fluid turbulence and gyro-kinetic code validation

Simulations of snowflake divertor configuration for NSTX-U yield favorable projections

- Significant geometry effects affecting plasma-wetted area, heat transport and radiation
- Significant heat flux reduction compatible with cryopump operation
 - Multi-fluid edge transport model UEDGE with 4 % carbon
 - for P_{NBI}=12 MW case, peak outer divertor heat flux reduction from 15 MW/m² to 4 MW/m²
 - Due to increased plasma-wetted area, heat flux diffusion across longer flux tube length, and radiation
 - Inner divertor detached
 - Particle removal by cryopump results in reduced radiation
 - But still significant heat flux reduction due to geometry

Impurity-seeded radiative divertor with feedback control is planned for NSTX-U

- Detachment studies and validation of multi-fluid and gyro-kinetic models
 - Single, double null and snowflake divertors will be combined with gas seeding
- Seeding gas choice dictated by Z_{imp} and PFC
 - Li/C PFCs compatible with D₂, CD₄, Ne, Ar seeding
 - UEDGE simulations show Ar most effective
 - Too much argon causes radiation collapse of pedestal
- Feedback control of divertor detachment via impurity particle balance control
 - Cryopump for particle removal
 - Divertor gas injectors as actuators
 - Real-time control sensors being identified
 - PFC temperature via IR thermography or thermocouple
 - Thermoelectric current between inner and outer divertor
 - Impurity VUV spectroscopy or bolometry
 - Neutral gas pressure
 - Balmer / Paschen series spectroscopy

Peak heat flux (outer target)

Plan for SOL and divertor research

- Year 1 of 5 Year Plan
 - Continue analysis of SOL width database and comparison with models
 - Collaboration with DIII-D on snowflake and radiative divertor experiments
- Years 2-3 of 5 Year Plan
 - Establish SOL width and divertor database vs. engineering and physics parameters
 - Re-establish edge turbulence measurements (GPI, BES, cameras, probes)
 - Initial radiative divertor experiments with D₂, CD₄ and Ar seeding and lithium
 - Develop snowflake divertor magnetic control and assess pedestal stability, divertor power balance, turbulence, 3D fields as functions of engineering parameters
 - Comparison with multi-fluid and gyro-kinetic models
- Years 4-5 of 5 Year Plan
 - Compare SOL width data with theoretical models and in the presence of 3D perturbations of various types, e.g. RMP coils, HHFW heating, NBI injection
 - Combine snowflake configurations with pedestal control scenarios and tools, cryo
 - Implement radiative divertor control, demonstrate long-pulse H-mode scenario
 - Develop experiment-based model projections for ST-FNSF

Diagnostics: MPTS, CHERS, BES, GPI, IR cameras, Langmuir probes, spectroscopy Incremental: divertor Thomson Scattering to provide critical data for model validation for snowflake and radiative detachment studies

🔘 NSTX-U

Boundary Physics program in NSTX-U contributes to critical research areas for FNSF and ITER

Boundary Physics Thrusts (and outline of the talk)

- BP-1: Assess and control pedestal structure, edge transport and stability
 - Pedestal structure, transport and turbulence studies
 - ELM characterization and control
- BP-2: Assess and control divertor heat and particle fluxes
 - SOL transport and turbulence, impurity transport
 - Divertor heat flux mitigation with impurity seeding and divertor geometry

BP-3: Establish and compare long-pulse particle control methods

- Validate cryo-pump physics design, assess density control and recycling
- Compare cryo to lithium coatings for particle (collisionality) control

Particle control in NSTX-U will be accomplished with variety of fueling and exhaust techniques

- Density control goals for NSTX-U:
 - Lower density to access reduced collisionality
 - As low as $f_G \sim 0.3-0.5$ desired
 - Need to avoid density limit in long-pulse shots
 - Greenwald fraction $f_{\rm G}{\sim}0.7{\text -}1.0$ sufficient for non-inductive studies
 - Develop FNSF-relevant pumping scenarios
- Novel and conventional pumping and fueling techniques for density control
 - Lithium coatings for deuterium pumping
 - Cryopumping
 - Conventional and supersonic gas injectors
- Impurity control goal $Z_{eff} \sim 2-2.5$
 - ELMy H-modes with boronized carbon PFCs
 - ELM-triggering with 3D fields and lithium granules to expel impurities in H-modes with lithium

Cryo-pump will be key for density and collisionality control in Years 4-5

- Cryo-pump is proven technology for plasma density control
 - NSTX-U design is similar to DIII-D
 - Need plenum pressure of 0.6 mTorr to pump NBI input

- Semi-analytic pumping model used to optimize plenum geometry
- Optimized plenum geometry can pump conventional and snowflake divertors over a range of R_{OSP}, I_p
 - Cannot sustain $f_G < 1$ at 2 MA with standard divertor
 - High snowflake flux expansion results in better pumping

Plan for particle control research

- Years 1-3 of 5 Year Plan
 - (Year 1) Complete cryopump physics design
 - Perform engineering design and installation
 - Validate cryopump physics design by comparing with initial experiments
 - Assess lithium conditioning for density and impurity control
 - Assess lithium coating lifetimes and interaction with ion fluxes
 - Compare boronized and lithium-coated graphite plasma-facing componenets
 - Perform local hydrogenic recycling and particle balance measurements in the upper and lower divertor areas, and main wall
- Years 4-5 of 5 Year Plan
 - Characterize performance of cryopump, compare with design calculations, and with lithium conditioning
 - Assess pump performance with metallic PFCs
 - Develop scenarios use the cryo-pump for deuterium control while maintaining ELMs for impurity flushing

Boundary program will advance pedestal physics and power and particle handling in NSTX-U for ST-FNSF, ITER

- Pedestal physics: test consistency with peeling ballooning, and test applicability of kinetic ballooning
 - Use lithium conditioning, granules, and 3D fields as a way to manipulate the density and pressure profile
- Power and particle handling: further develop snowflake and radiative divertors
 - Test key predictions of snowflake configuration, and evaluate synergy with radiative divertors, graphite and high-Z plasma facing components, and cryo-pumping
- Li and cryopump to achieve stationary density and low Z_{eff}
 - Up to an order of magnitude reduction in v^* compared to NSTX

Backup

Planned NSTX-U facility upgrades enable access to new parameter space and unique capabilities

Planned upgrades (NSTX → NSTX-U)	Operations year available	Boundary Physics area
P _{NBI} = 5 → 12 MW (5 s) 7.5 →15 MW (1.5 s)	1-2	Pedestal structure and ELM stability, L-H, divertor heat flux (12 \rightarrow 15-20 MW/m ²) P/R ~ 10 \rightarrow 20 P/S ~ 0.2 \rightarrow 0.4
$I_p = 1.3 \rightarrow 2 \text{ MA}$ $B_t = 0.5 \rightarrow 1 \text{ T}$	1-2	L-H transition, pedestal structure and stability, SOL width, divertor heat flux
Pulse length 1.5 \rightarrow 5-10 s	1-2	Steady-state divertor heat flux mitigation, density and impurity control
Axisymmetric PF (divertor) coils PF1A, 1B, 1C, 2L	1-3	Plasma shaping, L-H, divertor configuration control
High-Z plasma-facing components	2	Core and pedestal impurity transport, divertor transport
Non-axisymmetric control (NCC) coils	3	ELM control and pedestal transport
Divertor cryopump	3	Pedestal stability, density control, divertor transport and radiation control

Divertor Thomson Scattering system would significantly enhance NSTX-U Boundary research capabilities

- Physics contributions
 - ELM and inter-ELM divertor transport
 - SOL width scaling, role of X-point heat transport
 - Radiative detachment model validation
 - Snowflake divertor properties, incl. X-pt β_p measurements
 - Divertor plasma-surface interaction and impurity transport studies, erosion rates via spectroscopy
- A conceptual geometry identified for NSTX-U
- Conceptual system design underway

SOL width studies elucidate on heat flux scaling projections for NSTX-U, ST-FNSF and ITER

- Goal: compare SOL width scalings with models
- SOL width scaling
 - In NSTX: $\lambda_q^{mid} \sim I_p^{-1.6}$
 - For NSTX-U (2 MA): $\lambda_q^{mid} = 3\pm0.5 \text{ mm}$
 - Multi-machine database (Eich IAEA FEC 2012):
 - λ_q^{mid} (mm) (0.63+/-0.08)x $B_{pol,MP}^{-1.19}$
 - For NSTX-U (B_p~0.55 T): λ_q^{mid} ~ 1.3 mm
 - Comparison with SOL models
 - Parallel transport: conductive/convective, cross-field : collisional / turbulent / drift
 - Goldston heuristic model: ∇B and curvature drift motion sets SOL width $\lambda_{SOL} \sim (2a/R) \rho_i$, Spitzer thermal conduction sets T_{sep} \longrightarrow
 - For NSTX-U: $\lambda_q^{mid} \sim 6 \text{ mm}$
- Diagnostics: IR cameras, MPTS, Langmuir probes

- Divertor Thomson scattering (incremental) desirable

NSTX-U Years 3-4 will utilize cryo-pumping for particle control

- Cryo-pump is proven technology for plasma density control
 - More conventional pumped ELMy H-mode scenario
- NSTX-U design is similar to DIII-D outer lower pump
 - Plenum located under new baffling structure near secondary passive plates
 - Pumping capacity of a toroidal liquid He cooled loop
 - S=24,000 l/s @ R=1.2m (Menon, NSTX Ideas Forum 2002)
 - Need plenum pressure of 0.6 mTorr to pump beam input (TRANSP)

W NSTX-U

Semi-analytic pumping model used to optimize plenum geometry

- Model developed for DIII-D pumping studies (Maingi, NF '99)
 - Predicts plenum pressure, validated with DIII-D data
 - Projected NSTX-U heat flux (I_p scaling) and divertor T_e (~15 eV) used as input
 - Uses first-flight neutral model (insufficient for detached divertor)
- Pressure is maximum for duct height g~2.5 cm, length h~2 cm
 - But is only weakly reduced if these are increased together
- With pump entrance at R=0.72m, pressures >1 mTorr can be reached over wide range of plasma shapes and SOL widths
 - Comparable to pressures in DIII-D plenum
 - Well above that needed to pump NBI particle input

Optimized plenum geometry can pump to low density for conventional and snowflake divertors over a range of R_{OSP}, I_p

 R_{OSP} : outer strike point radius R_{pump} : plenum entrance radius SD: standard divertor SFD: snowflake divertor f_G : n_e/n_G

Core density estimated assuming pumped \mathbf{f}_{G} SD: R _{pump} = 0.72 m flux=NBl input 0.8 $q_{pk} > 10$ 2-pt model used to 1.8 0.7 MW/m² estimate upstream density 1.6 0.6 Assume n_/n_sep~3 (¥ 1.4 ₩__ 1.2 0.5 Can pump to $f_{G} < 0.5$ 0.4 $f_{G}\sim 0.7$ desirable for all scenarios, lower 1 0.3 0.8 provides more flexibility 0.6 0.2 0.55 0.65 0.6 Moving R_{OSP} closer to pump allows lower n_e , but limited by power R_{osp} (m) SFD: R _{pump} = 0.72 m f_G 0.8 handling 1.8 0.7 High flux expansion in 1.6 SFD gives <u>better</u> 0.6 (¥ 1.4 ₩ _ª 1.2 pumping with SOL-side 0.5 configuration 0.4 1 More plasma in far SOL 0.3 0.8 near pump 0.2 0.6 More room to increase 0.5 0.55 0.6 0.65 R_{osp} (m) R_{OSP} at high I_p

🔘 NSTX-U

SOLPS calculations confirm optimization approach based on analytic model

- SOLPS: 2D fluid plasma/neutral transport
 - Plasma transport classical parallel to B (+kinetic corrections), ad-hoc crossfield transport coefficients
 - Kinetic neutral transport using MC code EIRENE
 - More comprehensive treatment of neutral transport (beyond first-flight)
 - Can treat radiative/detached divertor
- Range of divertor conditions have been produced using standard and snowflake equilibria
- SOLPS-calculated plenum pressure agrees with analytic model for T_e^{div}>2 eV, factor of ~3 higher in detached regimes

⇒ Optimization of design presented here is conservative

- Pumping likely to be stronger for realistic conditions