

Supported by

NSTX-U 5-Year Plan for Materials and Plasma Facing Components

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LINE Lodestar MIT Lehigh U **Nova Photonics** Old Dominion ORNL PPPI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Illinois **U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

M.A Jaworski, C.H. Skinner, R. Kaita and D.P. Stotler

NSTX-U 5-Year Plan Review PPPL – B318 May 21-23, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res, Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER **ENEA**. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

High-level goals for NSTX-U 5 year plan (see Program Overview Talk)

- 1. Demonstrate 100% non-inductive sustainment at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q and rotation to dramatically extend ST physics understanding
- 3. Develop and understand non-inductive start-up and ramp-up (overdrive) to project to ST-FNSF with small/no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes

5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solutions for next-steps

NSTX-U long-term objective is to perform comparative assessment of high-Z and liquid metal PFCs (see Maingi talk)

- Conversion to all-metal PFCs provides opportunity to examine role of PFCs (including liquids) on integrated scenarios with good core, pedestal, divertor
- NSTX-U has two emphases for addressing power exhaust and PMI issues for next step devices
 - Magnetic topology, radiative divertor
 - Self-healing/replenishable materials (e.g. liquids)
- Significant uncertainties in both solid- and liquid-PFCs motivates parallel research

M&P research will develop understanding of material migration and heat-flux handling of high-Z and liquid Li PFCs

- MP-1: Understand lithium surface-science for long-pulse PFCs
 - Assess impact of more complete Li coverage
 - Use the new Material Analysis and Particle Probe (MAPP) and laboratory studies to link tokamak performance to PFC surface composition
- MP-2: Unravel the physics of tokamak-induced material migration and evolution
 - Confirm erosion scalings and evaluate extrapolations
 - Determine migration patterns to optimize technical solution
- MP-3: Establish the science of continuous vapor-shielding
 - Determine the existence and viability of stable, vapor-shielded divertor configurations
 - Determine core compatibility and extrapolations for extended durations and next-step devices

Li wall conditioning results in confinement improvements and reduction in divertor carbon source

- Confinement increases continually with pre-discharge lithium application with downward facing evaporators
- Carbon influx in divertor reduced after application of lithium conditioning

Carbon sputtering yield with lithium

🔘 NSTX-U

Oxygen recently identified as important to lithium chemistry and sputtering

- Oxygen uptake by lithium films quantified in laboratory experiments
 - Oxide layer formation in ~200s in NSTX (~600s inter-shot time)
 - Consistent with Liquid Lithium
 Divertor (LLD) results showing little
 change in impurity emission
- Influence of oxygen contaminants being investigated in laboratory
 - Molecular dynamics simulations of Li-C-O show increased D uptake (Krstic, PRL 2013)
 - Non-zero oxygen sputter yield from contaminated surfaces
 - No indications of O degrading plasma performance (so far)
- Rapid impurity accumulation motivates flowing systems

NSTX whole-divertor impurity emission

MAPP will be a key diagnostic for bridging the gap between discharge performance and lab-based surface science

- Material Analysis and Particle **P**robe will determine material composition and surface chemistry inside tokamak
 - Exploit MAPP capabilities to link with surface science labs at PPPL, Purdue, U-Illinois
 - Identify role of contaminants in Li PMI
 - Being prepped for use in LTX this year
- Optimize areal coverage of wall conditioning techniques
 - Diffusive evaporations and upwardfacing evaporators
 - Examine energy confinement, impurity production, particle control...

for NSTX-U

Thrust MP-1 research plan will use multiple tools to unravel lithium surface-science during transition to high-Z PFCs

- FY14 Surface science laboratory and LTX experiments
 - Utilization of MAPP to examine high-Z substrates in LTX
 - Measurements of deuterium retention in lithium on high-Z substrates in laboratory experiments (PU collaboration)
- FY15 Comparison of boronization with more complete PFC coverage by Li, establish baseline performance data sets
 - Diffusive evaporation and MAPP to identify surface chemistry changes during transition to lithium wall conditioning
 - Prepare high- and low-triangularity discharges to prep for high-Z tiles
- FY16 High-Z tile installation, upward evaporation
 - Examine role of evaporation *rate* on Li efficacy
 - Determine how high-Z substrate affects coating performance
- FY17-18 High-Z tiles and vapor shielding
 - Determine high-temperature (T>500C via plasma heating), coated PFC performance and role of impurities in lithium PMI throughout machine

M&P research will develop understanding of material migration and heat-flux handling of high-Z and liquid Li PFCs

- MP-1: Understand lithium surface-science for long-pulse PFCs
 - Assess impact of more complete Li coverage
 - Use the new Material Analysis and Particle Probe (MAPP) and laboratory studies to link tokamak performance to PFC surface composition
- MP-2: Unravel the physics of tokamak-induced material migration and evolution
 - Confirm erosion scalings and evaluate extrapolations
 - Determine migration patterns to optimize technical solution
- MP-3: Establish the science of continuous vapor-shielding
 - Determine the existence and viability of stable, vapor-shielded divertor configurations
 - Determine core compatibility and extrapolations for extended durations and next-step devices

Complementary erosion diagnostics will enable identification of erosion/redeposition patterns

- Simple scaling estimates indicate factor of 10 increase in wall erosion in NSTX-U
- NSTX-U will expand coverage of erosion diagnostics
 - QCMs and witness samples at multiple firstwall locations (4x poloidal locations, 20 witness plates in NSTX)
 - Marker tiles used in high-heat flux regions
 - Upgraded MAPP with QCM will measure
 mass and composition simultaneously
 - Net erosion diagnosed with mixture of intershot and campaign-integrated diagnostics
- Expanded suite of plasma diagnostics to constrain plasma models
 - Langmuir probes for local n_e, T_e, potential
 - Gross erosion via plasma spectroscopy

Mass-loss measured on QCMs

Thrust MP-2 research will quantify material erosion/migration on first-wall and in divertor for both high-Z and low-Z surfaces

- FY14 Data analysis and test-stand experiments to prepare for tokamak experiments
 - Continue analysis of NSTX discharges to optimize diagnostics
 - Magnum-PSI experiments to measure gross and net erosion at high temp.
- FY15 Make initial assessment of material erosion and migration in NSTX-U discharges, compare B vs. Li discharge conditions
 - Utilize MAPP to measure composition of films, compare to Magnum-PSI material evolution data and models; measure gross and net erosion
 - Prepare for high-Z tile upgrade with low- and high-triangularity data sets
- FY16 Establish first-wall erosion scalings, protection of high-Z substrate and compatibility with high-performance discharges (e,g. high-Z impurity accum.)
 - Examine dependence on edge neutral pressure, input power, pulse length
 - Determine impact of synergistic operations on material migration (e.g. impurity seeded divertors, snowflake configuration)
- FY17-18 Determine impact of upper divertor high-Z tiles and the impact of vapor-shielded regime on material migration

M&P research will develop understanding of material migration and heat-flux handling of high-Z and liquid Li PFCs

- MP-1: Understand lithium surface-science for long-pulse PFCs
 - Assess impact of more complete Li coverage
 - Use the new Material Analysis and Particle Probe (MAPP) and laboratory studies to link tokamak performance to PFC surface composition
- MP-2: Unravel the physics of tokamak-induced material migration and evolution
 - Confirm erosion scalings and evaluate extrapolations
 - Determine migration patterns to optimize technical solution
- MP-3: Establish the science of continuous vapor-shielding
 - Determine the existence and viability of stable, vapor-shielded divertor configurations
 - Determine core compatibility and extrapolations for extended durations and next-step devices

High temperature lithium surface may be able to provide a selfhealing surface and intrinsic low-Z impurity radiation source

- Lithium vapor cloud can potentially provide effective power and pressure loss
 - Non-coronal Li radiation
 - Li vapor pressure vs. plasma pressure
- Capillary-Porous System targets have dissipated large incident heat fluxes tested to 25MW/m² limited by Li inventory (Evtikhin JNM 2002)
- What is T_{max,surf} for a lithium PFC?
- Diagnosis in NSTX-U via complementary diagnostics
 - Langmuir probes for target pressure, n_e, T_e
 - Optical, VUV emission and bolometry for P_{rad}
 - DBIR thermography and TCs for heat flux and energy deposited
- Preliminary experiments already performed at Magnum-PSI (see backup)

Thrust MP-3 will establish the existence of vapor-shielded regime and assess compatibility with integrated scenarios

- FY14-15 Assess the high Li influx regime (w/ Thrust 2)
 - Complete high-Z tile design for installation in year 3
 - Conduct high temperature experiments on Magnum-PSI
 - Validate plasma transport and atomic physics data bases for highdensity, high-Li fraction plasmas
- FY16 Validate high-Z substrate design and reference performance
 - Boron vs. Lithium experiments diverted directly onto high-Z tiles
 - Assess power and pressure balance in the NSTX-U SOL
- FY17 Extend operational space of vapor-shielded regime
 - Determine core compatibility with vapor-shielded divertor plasmas
 - Determine vapor-shield performance with varying SOL pressures, input powers, connection length
 - Assess transient loading response (ELM loads)
- FY18 Determine flowing-system replenishment needs due to net erosion to extend vapor-shielding regime beyond 1s tests

Parallel plasma-facing component research and development to support high-Z tile upgrade and vapor-shielding studies

- High-Z PFC assessment
 - Lamellae demonstrated technique (e.g. C-MOD and JET-ILW) to reduce stress
 - Both W and Mo are compatible with Li
- Flowing liquid lithium PFC development underway
 - Conceptual design and initial engineering assessment of long-pulse, LM-PFCs underway
 - Basic liquid-metal loop technologies being assembled for testing
- Long-term NSTX-U goal to implement LM divertor target

NSTX-U Five-year plan will begin assessment of a high-Z PFC and liquid lithium integrated PMI solutions for next steps

- M&P research will contribute to the understanding of material migration and evolution to prepare for next-step devices
 - Study mixed material issues with Li, C, O and high-Z studies
 - Examine whole machine material erosion, migration, re-deposition
 - Begin assessment of high-Z PFCs with low-Z coatings
- M&P research will advance liquid metal PFCs as an innovative solution to handling fusion exhaust power and particle loads
 - Establish the science of continuous vapor shielding with hightemperature, liquid lithium PFCs and determine the compatibility with high-performance discharges
 - Perform side-by-side comparison of a high-Z PFC vs. a liquid metal PFC to inform next-step devices

Backup

NSTX discharges already indicate significant first-wall erosion and NSTX-U will extend this erosion by factor of 10

- Simplified estimates indicate large amounts of wall erosion in next-step devices
 - Estimates based on charge-exchange neutrals at the edge
 - Several simplifications (e.g no neutral pressure dep., poloidal uniformity)
- Plasma + neutral transport codes enable modeling of these processes
 - Fluid codes: UEDGE, SOLPS, OEDGE; Neutral codes: EIRENE, DEGAS2; impurity codes: DIVIMP
 - Mean neutral energies in NSTX discharge 40-90eV
 - Flux to walls poloidally non-uniform (peaked near outboard LSN)
 - ~20% of carbon flux from first wall

¹P.C. Stangeby, JNM 2011.

(D) NSTX-U

 $\Gamma_{sputt.}^{Gross} \approx Y_{sputt,cx} \frac{P_{cx}/E_{cx}}{S_{plasma}}$

 $\approx Y_{sputt,cx}$

 P_{max}/S

 $[MW/m^2]$

0.4

0.2

0.5

0.15

0.98

0.98

OMP

LDiv

Machine

 $DIII-D^1$

NSTX

NSTX-U

 $ITER^1$

ST-Pilot

ARIES-AT

IMP

100

 $f_{cx}P_{heat}/E_{cx}$

 τ_{annual}

[s]

 10^{4}

 3×10^3

 10^{4}

 10^{6}

 10^{7}

 3×10^7

Inc. Energy

Phys Fe

Phys+Chem C

UDiv

Yield

[kg/yr]

0.08 (C)

0.012 (C)

0.1 (C)

92 (W)

1800 (W)

8000 (W)

IMP

 10^{4}

10³

 10^{2}

10

10⁰

10

10⁻²

180

OEDGE

mpurity Flux [

Initial experiments at Magnum-PSI demonstrate vapor cloud production under divertor-like plasma conditions

- High-Z substrate target tested
 - 2-3x10²⁰m⁻³, 2eV plasma
 - 1200C surface by end of 7s
- Persistence of cloud indicates very large (R~1) redeposition fraction (c.f. Brooks JNM 2001)

Li-I emission, t=2.5s

🔘 NSTX-U

Taming the plasma-material interface is a grand-challenge for magnetic fusion energy

- Creation of economical fusion energy depends on component lifetime
- Significant uncertainty in how existing PFC candidates will extrapolate
 - Solids look promising but...
 - Liquids look promising but...
- PMI challenge must be met to enable a high-power-density, long-pulse facility such as FNSF

Tungsten melting under ELM-like bombardment (Federici, JNM 2005)

Lithium ejection in DIII-D (Whyte, FED 2004)

NSTX performed liquid-metal PFC experiments with the Liquid Lithium Divertor (LLD)...

- Liquid lithium divertor installed for FY2010 run campaign
- 2.2cm copper substrate, 250um SS 316, ~150um flamesprayed molybdenum porous layer; LITER loaded
- 37g estimated capacity, 60g loaded by end of run

🔘 NSTX-U

...and demonstrated stable liquid metal PFC operation in a diverted tokamak

 Large transient currents measured with Langmuir probes, LLD porous geometry limits wavelength

 Raleigh-Taylor analysis provides marginal stability curves; NSTX LLD stable

 CPS tests also reduced droplet ejection with smaller pore sizes*

Jaworski JNM 2011, Jaworski IAEA FEC 2012, Whyte FED 2004, *Evtikhin JNM 2002

Thin coatings can provide protection of high-Z substrates

- Ion penetration depth of ~10nm means plasma will only interact with coating material
- Lithium erosion rate is large and highly temperature dependent
 - Erosive fluxes could quickly remove protective layers
 - No experimental data of erosion yield above ~500C, at these fluxes^{1,2}
- Coating lifetime is extended by redeposition fraction
 - Motivates flowing systems to replenish coating
 - No temperature dependence in boron sputter yield³, T~2s at R=0

¹Doerner, JNM 2001. ²Allain, JNM 2003. ³Hechtl, JNM 1992

🔘 NSTX-U

Overview of experiments

- •Experiments diverting onto the LLD occurred throughout run campaign
- •Either diverted onto LLD or just inboard on ATJ graphite
- •LITER only available filling method for the LLD
 - 7% filling efficiency estimated
 - Always coating entire lower divertor in addition to LLD
- Database of shots taken throughout run year

High-density Langmuir probe array installed for divertor plasma characterization

- Liquid Lithium Divertor (LLD) installed to study lithium plasma-material interactions
- Probe array characterizes
 local plasma properties in a range of experiments
- Provides high spatial density of measurements
- Oblique incidence yields smaller effective probe size

J Kallman, RSI 2010 MA Jaworski, RSI 2010

Consistency between diagnostics demonstrated with empirical plasma reconstruction framework

- •Utilizes measured data points as starting point in constraining plasma models to fill the gaps between diagnostics
- •Solution improves as more and more data constrains background
- •OEDGE code suite used here: Onion-Skin Method (OSM2)+EIRENE+DIVIMP
 - OSM2 solves plasma fluid equations
 - EIRENE performs Monte Carlo neutral hydrogen transport, iteratively coupled to OSM2
 - DIVIMP performs Monte Carlo impurity transport
- •Utilized here to compare probe interpretation methods against other diagnostics

Density measurement from spectroscopy confirm kinetic probe interpretation

- •Divertor spectrometer viewing strike-point region during discharge
- •Deuterium Balmer lines shown in spectra
- Pressure broadening analysis indicates dneisty of 3.6e20 m⁻³
 - Existence of high-n Balmer lines indicates low temperature

Broadening measurement and modeling of hydrogen spectrum consistent with kinetic probe interpretation

- Pressure broadening yields density
- •OEDGE plasma+neutral solution provides local parameters
- •Collisional-radiative model by D. Stotler calculates excited state populations

R - R_{sep} [cm]

 $\Psi_{N, EFIT02}$ [-]

0.0

•Brightness ratios normalized to B6-2 consistent with 3<T_e<5eV

-4.3

N_e (kinetic LP) N_e (class. LP)

Broadening

0.98

Jaworski, et al., 20th PSI, Aachen, Germany, June 2012.

Stark

Divertor Electron Density [×10^{20/m³} 5

4

3

2

0

0.96

2.6

1.02

Distribution function analysis indicates some local changes in plasma conditions on plasma-heated LLD

- •Discharge sequence repeatedly heated and plasma-conditioned the LLD surface
- •Local plasma temperatures elevated with hotter LLD surface temperature ($T_{LLD} > T_{melt,Li}$)
- •Increase in plasma temperatures correlated with increase in V_p - V_f potential difference¹
- •Local changes raise the question whether large-scale global changes are also observed...

¹Jaworski et al., Fusion Eng. Des. 87 (2012) 1711.

- •Embedded thermocouples provide measure of temperature changes from before and after discharge
- •Each plate is 43kg of copper
 - $\Delta E = mc_p \Delta T$ per plate
 - $P_{LLD} \sim 4\Delta E / T_{pulse}$
 - $P_{LCFS} = P_{NBI} + P_{OHM} P_{RAD} dW/dt$
- •LLD absorbing about 25% of exhaust power (P_{LCFS})
 - ~1MW in some cases

 No molybdenum observed in the plasma after melted (Soukhanovskii, RSI, 2010)

Jaworski, et al., IAEA FEC 2012

Surface contamination indicates this was not a "fair" test of a liquid lithium PFC

•Divertor filterscopes provide indicator of impurities

- Relative fraction of impurity should be reflected in sputter yield
- Particle flux proportional to power
- Normalization against flux indicates no difference diverted onto the LLD
- •Plasma cleaning in PISCES-B did show oxygen reduction*
 - 400s, T>600K
 - LLD transiently exceeded these temperatures, but not steady
- •T_{intershot} ~ T_{oxidize} indicates oxidation likely (see GO6.008, A. Capece)

Jaworski IAEA FEC 2012, *Baldwin NF 2002.

Performance should be independent of lithium quantity if surface contamination is key variable

•FY2010 LLD experimental set

- Experiments span 60g to nearly 1kg of deposited lithium
- Includes 75hr deposition at midyear
- Calculate ITER 97L H-factor average from 400-600ms for each discharge
- Discharges look about the same between start and end of run
 - Consistent with surface contamination hypothesis
- Fully-flowing PFC can provide a means of sweeping away gettered material and creating "stationary" surface conditions.

Jaworski, et al., IAEA FEC 2012

Vertical body forces can destabilize free surface

- •Net result of radial currents is to produce vertical forces
 - Currents in SOL that close in the PFC
 - Disruption eddy currents
- •Net body force upward has the potential to create Raleigh-Taylor instability
 - Must overcome gravity and surface tension
 - Must overcome magnetic tension (depending on orientation)

$$\begin{aligned} \frac{\partial u_i}{\partial x_i} &= 0\\ \rho \left(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} \right) &= \rho X_i - \frac{\partial p}{\partial x_i} + \mu \nabla^2 u_i \end{aligned}$$

$$n^{2} = k(jB/\rho - g) \left[1 - \frac{k^{2}\Sigma}{(jB/\rho - g)\rho} - \frac{B^{2}k_{x}^{2}}{2\pi\mu_{0}(jB/\rho - g)\rho k} \right]$$

Jaworski JNM 2011

Porous-MHD effects alter liquid-metal wicking

- •Wicking into porous material described with Darcy Eqn.
 - Pressure head provided by capillary pressure

•Addition of MHD pressure losses and rearrangement creates porous-MHD version of the Lucas-Washburn eqn.

•Solution yields "sorptivity", S, of porous material including MHD effects

$$u = \frac{k \Delta P}{\mu L} \qquad P_c = \frac{2 \Sigma \cos \alpha}{r_p}$$
$$Lu = L \frac{dL}{dt} = \frac{2 \Sigma \cos \alpha}{r_p} \cdot \frac{1}{\mu/k + \sigma B^2}$$
$$2 \Sigma r_c \cos \alpha$$

$$=\frac{22T_p\cos\alpha}{\mu(r_p^2/k+Ha^2)}$$

$$L(t) = \left(\frac{4\sum r_p \cos \alpha}{\mu (r_p^2/k + Ha^2)}t\right)^{1/2} = S\sqrt{t}$$

Wicking into material can be optimized with pore size

Re-arrangement provides permeability-enhanced Hartmann parameter

- Permeability of packed-bed used for illustration¹
- Liquid lithium material properties in 1T field yield 130µm pore
- Sorptivity no longer isotropic as in many hydrodynamic systems
 - S²/2 = 8, 19 cm²/s (perp, para) Li, r_{p,opt}=130µm
 - S²/2 = 6, 20 cm²/s (perp, para) Sn, r_{p,opt}=290µm

¹Scheidegger, A.E. The physics of flow through porous media, University of Toronto Press, Toronto, Canada, 3rd ed. 1974.

χ

Conduction dominated thermal transport makes conventional cooling relevant

•Control-volume analysis illustrates relevant thermal transport regime¹

•Thin, slowly-moving liquid metal can be considered a solid in thermal anaysis

•Conventional gas cooling techniques applicable to these types of LM-PFCs

¹Jaworski, et al., **JNM** 2009, ²Ruzic, et al., NF 2011.

Advanced cooling techniques can be optimized for LM-PFCs

- T-tube¹ uses impinging gas jets to increase local heat transfer coefficient
- Helium jet peak heat transfer is near ~40 kW/m²/K in original T-tube design
- Altered T-tube for these simulations to have:
 - Smaller radius
 - Steel structure, s-CO2 coolant (No tungsten)
 - 10 MW/m² incident

¹Abdel-Khalik FST 2008.

MSTX-U

M.A. Jaworski - 20th European Fusion Physics Workshop - Ericeira, Portugal, Dec. 3-5, 2012

Reduced sizes can benefit power extraction

- •At constant stress, radius reduction can reduce pipe-wall thickness
 - Rely on liquid metal protection of substrate
 - Manufacturing challenges...
- Yield stress and creep deformation provide design points ODS-RAFM should avoid rupture or >2yrs
 T_{max,steel}~610C
 Highest stress at lowest temperatures for >2yrs

 - (500-550C)
 - Further optimization to be done in 3D to address margins of safety, etc.

Liquid lithium demonstrated to protect fragile substrate

•Red Star Capillary-Porous-System (CPS) long-since shown to substrate damage under ELM-like disruptions (5MJ/m², 0.5ms in QSPA)

•Able to withstand 25MW/m² heat fluxes via strong evaporation and vapor shield

 In principle, all PFCs in fullyflowing system will return to an equilibrium position (i.e. self-healing)

Evtikhin, et al., J. Nucl. Mater. 271-272 (1999) 396.

Supercritical CO2 is a more effective coolant than helium

•Replacement of He with s-CO2 in base T-tube design reduces pumping power by 30%

- Identical front-face temperatures
- 2x pressure drop, 1/3 required flow
- •Better thermal efficiency at lower temperatures than He Brayton cycle¹
 - S-CO2 w/ 550C turbine inlet has 45% thermal efficiency
 - He w/ 700C turb. inlet had 43% (ARIES-CS)²

$$W_{pump} = Q \varDelta \varDelta \rightarrow \frac{W_{CO2}}{W_{He}} \approx \frac{8 \times 108}{24 \times 50} \approx \frac{2}{3}$$

¹ Dostal, et al., Tech. Report MIT-ANP-TR-100, MIT, March, 2004. ²Raffray, et al., **FST** 2008.

Material compatibility determines substrate

 Liquid surface absorbs incident plasma, substrate material absorbs neutrons

•Liquid lithium compatible with steel, vanadium alloys, refractory metals¹

•Liquid tin compatible with refractories, not compatible with steel above 400C (unknown compatibility with vanadium alloys)¹

•Porous structure can be produced by various methods (e.g. laser texturing², flame-spraying³, foam CVD⁴)

¹ Zinkle and Ghoniem, FED 2000. ² Lin, et al., JNM 2013. 3 Kugel, et al., FED 2011, ⁴ Jaworski, et al., JNM 2008.

•T-tube first example considered with well documented design for extension and modification

- Still requires significant absolute pressure and wall thicknesses
- Continued size reduction becomes difficult to manufacture
- ~10 MW/m² may be the limit with steel structures
- Integrated PFC-power cycle analysis is on-going work...
- Liquid metal heat-pipes another option being pursued
 - Reduces pressure at the target front-face allowing thinner structures and lower stress levels (may not need ODS)
 - Can effectively spread heat-flux over larger area reducing requirements
 on gaseous cooling
 - Porous-MHD issues already under study with free-surface work

•Tritium processing and closing the liquid lithium loop

- Requires confinement device experiments to demonstrate re-capture of migrating materials
- Could prove to be lithium "Achilles heel" due to on-site inventory¹
- Liquid metal protection of substrate material requires demonstration
 - Thin walls for better heat transfer rely on sacrificial liquid layer
 - Runaway electron beams? Other disruption events?
- Integrated core performance with high-temperature, liquidmetal PFCs
 - High-temperature, high evaporation/erosion lithium not demonstrated in divertor (encouraging results with limiter on FTU²)
 - High-temperature liquid tin PFCs never tested to date
- •Plasma modeling...

¹M. Nishikawa, "Tritium in a fusion reactor (effect of Li system on tritium)" Presentation at PPPL ST tokamak discussion, March 27, 2012. ²M.L. Apicella, et al., Plasma Phys. Control. Fusion 54 (2012) 035001.

DEMO challenges considerable but progress is being made to determine if a technically feasible LM-PFC option exists

•For 10MW/m² peak divertor heat loads incident on target in "Pilot-plant" ST- and AT-DEMOs

- Actively-supplied, capillary-restrained system prevents ejection
- Liquid lithium on ODS-RAFM structure with s-CO2 cooling looks encouraging (eliminates net-reshaping of PFC)
- Some additional optimization to be done with full 3D design
- Need data with high temperature lithium surface in divertor-like plasma
- •Experimental demonstration and additional analysis will address open issues over coming years
 - @PPPL internal lab funding, NSTX-U base program, other sources pending
 - Collaboration underway with Magnum-PSI, NSTX-U, and EAST

•Still several open issues forcing talk titles with the word "possible" but progress is being made; your input is welcome!

Liquid metal-structural compatibility

Zinkle and Ghoniem, **FED** 2000. (Sn and Sn-Li used interchangeably) "The Liquid Metal Handbook" Liquid-metals handbook", United States Office of Naval Research. U.S. Govt. Print. Off. 1950. (Gallium estimates)

MSTX-U

Evaporative self-cooling by Lithium

Why liquids? Because solids may not extrapolate

- •Two major failure modes for solids that are known:
 - Melting (transient heat loads)
 - Net-reshaping (erosion, migration, redeposition)
- •Some speculative failure modes:
 - Neutron-PMI synergistic effects (aside from bulk material changes)
 - Steady-state, selfregulating walls?

B. Lipschultz, et al., "Tungsten melt effects on C-MOD operation & material characteristics", 20-PSI, Aachen, Germany, May, 2012.

Coenen, et al., "Evolution of surface melt damage, its influence on plasma performance and prospects of recoverhy", 20-PSI, Aachen, Germany, May, 2012. Klimov, et al., JNM **390-391** (2009) 721.

Wall erosion/redeposition not mitigated by divertor configuration

Table 1 Rough estimate of net erosion rate of main walls based on assumptions in text. Assumes 100% wall coverage by Be, B, C or W.							
Device	P_{heat} (MW)	τ _{annual} (s/yr)	E ^{year} load (TJ/yr)	Beryllium net wall erosion rate (kg/yr)	Boron net wall erosion rate (kg/yr)	Carbon net wall erosion rate (kg/yr)	Tungsten net wall erosion rate (kg/yr)
DIII-D	20	104	0.2	0.13	0.11	0.08	0.16
JT 60SA	34	10 ⁴	0.34	0.22	0.19	0.15	0.27
EAST	24	10 ⁵	2.4	1.6	1.2	0.82	1.8
ITER	100	106	100	77 (29) ^a	64	44 (53) ^a	92 (41) ^a
FDF	100	10 ⁷	1000	610	500	340	740
Reactor	400	2.5×10^7	10,000	6500 (21,000) ^b	5300	3700	7900 (5000) ^b

P.C. Stangeby, et al., JNM 415 (2011) S278.

- •Charge-exchange processes create steady wall-flux
- •Low density plasma at first wall reduces local redeposition
- •1000s of kgs of eroded material migrating around tokamak vessel
- •Likely to redeposit in locations where cooler plasmas exist or behind baffled areas of machine
- •Do PFCs remain functional with large amounts of redeposited material?
 - Need very high duty-factor to even study the problem!

Magnum-PSI plasmas similar to NSTX divertor conditions

Parameter	Magnum-PSI	NSTX discharges with heavy lithium (Liquid Lithium Divertor)	
Power [kW]	60	4 MW NBI (15MW NSTX-U)	
Pressure source [Pa]	10 ⁴	N/A	
Pressure target [Pa]	<3	~0.1-1 (OEDGE modeling)	
Ti target [eV]	0.1-10	1-50?	
Te target [eV]	0.1-10	1-15 (non-Maxwellian)	
Ni target [m ⁻³]	10 ²⁰ -10 ²¹	5x10 ²⁰ at SP	
Ion flux target [m ⁻² s ⁻¹]	10 ²⁴ -10 ²⁵	2x10 ²³ at SP	
Power flux [MW m ⁻²]	10	2-5 at ~5 deg. Incl. (25 unmit.)	
B [T]	1.9	0.6 (1T NSTX-U)	
Beam diameter [cm]	10-1.5	~4cm FWHM	
Pulse length [s]	12-110	1s (5s-10s)	
Target size [cm]	3cm – 60x12	Order~10cm	
Bias [V]	-100 < V _{target} < 0	-20 < V _{floating} < 20	

MSTX-U

Several high-Z PFC fabrication concepts will be developed in parallel w/lab studies; demonstrated readiness affects pacing

- High heat flux regions (strike-point regions)
 - TZM or W lamellae, or TZM tiles (if workable)
- Intermediate heat flux regions (cryo-baffles, CS midplane)
 TZM tiles or TZM/W lamellae
- Low heat flux regions (passive plates, CS off-midplane)
 W-coated graphite
- Additional pulse-length extension (10-20s) at high power (~15MW) would require actively-cooled divertor PFCs

Several high-Z PFC fabrication concepts will be developed in parallel w/lab studies; demonstrated readiness affects pacing

- High heat flux regions (strike-point regions)
 - TZM or W lamellae, or TZM tiles (if workable)
- Intermediate heat flux regions (cryo-baffles, CS midplane)
 - TZM tiles or TZM/W lamellae
- Low heat flux regions (passive plates, CS off-midplane)
 W-coated graphite
- Additional pulse-length extension (10-20s) at high power (~15MW) would require actively-cooled divertor PFCs

FY2011 tile design

- Design developed for FY2011 run campaign, inboard horizontal divertor (next to CHI)
- Split-top molybdenum to reduce eddy-current forces (NSTX design points)
- 2MW/m² for 2s average surface heat flux expected to be acceptable for avoiding fatigue limits of TZM

Thermo-mechanical stress

R. Woods Mo-tile FDR

(D) NSTX-U

Lamellae used on JET and CMOD divertors

- Designed for 7MW/m² (uniform) for <10s (60MJ/m² total energy deposition)
- Lamellae depth determines
 thermal reservoir
- Cuts in toroidal and poloidal directions minimize eddycurrents and thermomechanical stress
- Complex shaping used to eliminate leading-edge effects

Ph. Mertens, 13th PFMC, 2011

Coatings of graphite substrates

- ASDEX converted machine to tungsten with the use of coatings
- Wall components coated with ~4 μm
- Divertor targets coated with ~200 μm
 - Despite extensive tests, still delaminated under peak heat fluxes >10MW/m²
 - Switch in coating technologies due to repeated delaminations
 - Necessitated radiative divertor development

Neu, Phys. Scr. 2009.

Initial thoughts without rigorous engineering assessment of concepts

- NSTX-U parameters will make bulk tiles difficult to implement
 - Bulk-tile difficult to reduce thermal stresses and maintain thermal capacity
 - Lamellae seem to offer all the appropriate features
 - Not considering actively cooled targets (yet)
- Low-heat flux areas can probably use coatings
 - Assuming already fabricated ATJ to be used
 - Some batch testing recommended to ensure any CTE mismatch not "life-threatening"

Possible NSTX-U high-Z development plan

- FY 13 Perform more rigorous engineering assessment of lamellae vs. bulk-tile for NSTX-U conditions (much of this would likely require ~1 FTE engineer, ~0.5 FTE designer/drafting + some tech time per year)
 - Identify coating technology (e.g. PVD vs. VPS) for use on ATJ tiles
 - Identify heat-flux facility for cyclic testing
- FY 14 Fabricate prototype PFC tile for thermal testing at suitable facility
 - Test small lots of coated samples
 - Test PFC prototype
- FY 15 Determine PFC interfacing issues with existing mounting hardware – final designs, procurements
 - Begin scenario development to control PFC energy deposition
 - PFC prototype testing to failure to establish absolute limits
- FY 16 fabrication installation
 - Complete scenario development for high-Z protection
- FY 17 operation with all high-Z

M&P diagnostic needs for high-Z upgrade on accelerated/incremental schedule

- M&P program written against baseline funding and consistent diagnostic set
 - Diagnostics consistent, PFCs transition
 - Expected modest implementation in first 5 years.
- With aggressive transition to high-Z walls the following would be advantageous
 - Expanded coverage of first-wall elements (passive plates) with particle sensors (probes) and spectroscopic coverage
 - Ensure core x-ray spectrometers are ready for operations to support high-Z transport studies and core accumulation