

Supported by

HHFW Modeling Directions

Nicola Bertelli

G. J. Kramer, C. K. Phillips, G. Taylor, E. Valeo PPPL P.T. Bonoli and J.C. Wright PSFC-MIT R.W. Harvey and Y. Petrov CompX L.A. Berry, D. Green ORNL E.F. Jaeger XCEL Engineering RF SciDAC and NSTX Teams Theory & Computation Brainstorming PPPL B318 March 2, 2012

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

NSTX HHFW Experiments show RF power losses in the scrape off layer \implies need predictive model

Initial AORSA studies show rf wave excitation in SOL but power absorption details unclear

Models to compare to measurements

GENRAY + SOL model + collisions + scattering model

- \rightarrow rays follow power flow in 3D
 - compare to field-line mapping studies by R. Perkins et al
- → include collisions as well as kinetic effects to estimate linear rf power losses in SOL as opposed to divertor and vessel wall
 → revisit importance of scattering effects on power loss
 - adapt and implement advanced scattering model used for LH
 - compare to experimentally inferred power losses in SOL

Develop finite element method (FEM) code for edge and couple to core full wave solver

- ➡ better spatial resolution and inclusion of 3D equilibrium effects
- → may provide better core to edge modeling in cold startup plasmas

Experiments show that HHFW interactions modify fast ion distributions — zero orbit width models inadequate

Ongoing comparisons have found differences between observations (eg. FIDA) and models

Improvements needed and future applications

- Generalize TORIC-HHFW to include non-Maxwellian ions → nearly complete; will compare to AORSA Couple CQL3D-FOW to TORIC-HHFW to model combined HHFW+NBI heating and redo comparisons to FIDA → build CQL3D-FOW into TRANSP for time-dependent analysis Analyze HHFW effects on unstable fast ion distributions → compare qualitatively to observed changes in EPM dynamics
 - compare qualitatively to observed changes in EPM dynamics
 collaboration with EP group (Fu, Breslau et al).
- Couple TORIC-HHFW with SPIRAL code
 - model HHFW affects on EPMs and compare to observations evaluate HHFW resonance overlap and examine data for evidence of stochastic in heating(e.g. anomalous loss or heating)