Core gradient region in full-f GK code XGC1 (Chang, et al)

o Simulation: global multiscale multiphysics approach, in diverted geometry
— Neoclassical, turbulence, impurities, neutral particles, atomic physics, NBI

= Turbulence will include all the important electromagnetic modes (ETG will be
handled on localized adaptive grids in multiscale)

— Edge neutral, impurity, atomic physics - pedestal neoclassical and
turbulence - SOC in core gradient region, momentum transport

— Central flat core: neoclassical effects from potato orbits (beam interaction with
electrons, thermal ions) - subcritical turbulence - core gradient region

o Diagnostics
— Radially distributed turbulence property: dn, 8T, k, w, V’c, g, correlations
— Effect of neutral gas puff, impurity radiation, pedestal T and n structure

- Weakly collisional pedestal in NSTX-U may separate T, from T, make T,
profile broader than n, provoke ITG source with radial spreading, and
interact with (mask) the ETG transport of NSTX

— Effect of beam ion density and energy on the turbulence property

o Code development
— Current capability:
= Full-f ITG + neoclassical + neutral in diverted geometry
= Full-f ITG+TEM turbulence in non-diverted geometry
= Delta-f electromangetic turbulence in non-diverted geometry
— Near Future: E&M turbulence + neoclassical + neutrals + impurities +NBI in
diverted geometry, ETG is planned to be a longer term addition



Comprehensive gyrokinetic code XGC1
(Unique in the world fusion program)

* Diverted magnetic field geometry with material wall BD condition

* Includes magnetic axis: wall-to-wall simulation
o Lagragian operation (particle time-advance) in cylindrical coordinates
o Eulerian operation (field solver) in field-following coordinates

* Wall-recycling of neutral particle with atomic physics
* Multiscale simulation of neoclassical, turbulence, neutral particle, and atomic physics
e Aim for 24 hour simulation by utilizing HPC

XGC1 performance on 3mm ITER grid
Cray XT5 (jaguarpf), 300K and 900K ptl/core, Full-f simulation

|

8000

—— 900K[ particles/coré

7000 - 300K particles/core

6000 -

5000

4000 -

Million Particles / second

3000 ¢ 223,488
2000 - cores
1000
Visua|izat'i0n by K Ma 0 0 50600 10(;2:):cessor ::50(::20 200IOOO 25(;000
lon turbulence fills the whole volume, but is XGC1 scales efficiently all the way to the
confined by magnetic separatrix surface (green maximal Jaguarpf capability, with MPI+ OpenMP.

curve). DIII-D geometry is used. Routinely uses >70% capability.



lon turbulence fills up the whole volume including central core, but
is confined by magnetic separatrix surface (green curve). DIII-D
geometry is used with monotonic g>1.

Filtered to 10-30 kHz, Visualization by K. Ma, Aug. 2011




DB: neutral_sglige
Cycle: 0 Tim¢d

Ve e o Neutral particles interact with
K plasma in XGCO0 and XGC1
smors « Monte Carlo transport
200064014 » Wall recycling

* lonization
« Charge exchange

1.000e+013 0.5
Max: 9.890e+017
Min: 0.0000

Z (m) 0.0

1:0 1.2 2.4 1.6 1.8 2.0 2.2 2.4
R (m)

Neutral particle density distribution in realistic DIII-D edge geometry
from XGC [simulation by D. Stotler].



Neutral ionization and charge exchange in XGC1 (1.7 ms)
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Final stiff T, profile shows global SOC, but is super-critical
at pedestal top, and is subcritical in the central core
(W\<0.25) and in the density pedestal

At pedestal top, VT, remains moderate (ion orbit mixing effect forces T, pedestal
to be wider than n-pedestal ), but Vn, is weak - Large n, = super critical

In the density pedestal, VT, is moderate (neutral cooling and orbit mixing), but
vn, is very strong - small n, = subcritical
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Simulation by S. Ku
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XGC1 shows for the first time that turbulence intensity (6n/n)? increases
with minor radius, as observed in experiments.



Turbulence spreading into core flat region in full-f GK XGC1

o Simulation: global multiscale multiphysics approach, in diverted geometry
— Neoclassical, turbulence, impurities, neutral particles, atomic physics, NBI

= Turbulence will include all the important electromagnetic modes (ETG will be
handled on localized adaptive grids)

— Edge neutral, impurity, atomic physics - pedestal neoclassical and
turbulence - SOC in core gradient region - spreading into central core

— Central flat core: neoclassical effects from potato orbits (beam interaction with
electrons, thermal ions) - subcritical turbulence

o Diagnostics
— Radially distributed turbulence property: dn, 8T, k, w, V’c, g, correlations
— Cold or hot pulse experiment to study spreading dynamics
— Effect of beam ion density and energy on the width of the core flat region

o Code development
— Current capability:
= Full-f ITG + neoclassical + neutral in diverted geometry
= Full-f ITG+TEM turbulence in non-diverted geometry
= Delta-f electromagnetic turbulence in non-diverted geometry
— Near Future: E&M turbulence + neoclassical + neutrals + impurities +NBI in
diverted geometry. ETG will be added when NSTX-U is in operation.



A spreading generated subcritical turbulence does not
usually mean elevated anomalous transport

How can such a turbulence expel heat if the plasma is centrally heated?
— Zonal flows builds high ways for avalanche process.
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Zonal flows form a “transport highway” in the
subcritical central core to expel heat when
central heating is present.

__ExB shearing at final time .

Zonal ﬂo&s usually form staircase
and reduce turbulence driven
transport

Sign of internal transport
barrier formation at the
boundary between sub and

SOC regions




Simulation of cold edge pulse in XGC1p
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Strong cooling at the edge after the plasma reaches

quasi steady state.
Cold pulse propagates inwards.

Inward propagation of intensified turbulence
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Fully nonlinear collision operation

- We have both linear-based Monte Carlo operator and fully non-linear Fokker-

Planck operator, at work in XGCO
» Chang-Hinton has been reproduced from nonlinear collisions within <20%
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