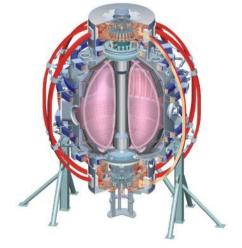


Supported by



Office of Science

Some Thoughts on Theory and Modeling Needs for the Advanced Scenarios and Control (ASC) TSG

CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

SPG

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI NFRI KAIST POSTECH ASIPP ENEA, Frascati CEA. Cadarache **IPP, Jülich IPP, Garching** ASCR. Czech Rep

Two Overarching Questions for the ASC TSG

- 2 questions:
 - 1: How can we control the axisymmetric state of the highperformance plasma?
 - Boundary, kinetic and magnetic profiles, divertor magnetic geometry and power handling.
 - 2: Can we find a high- β , stationary, 100% non-inductive operating point that projects to high fusion gain.
 - Integrate control optimization & physics understanding to achieve goal.
- Context:
 - Programmatic and operational needs of NSTX-Upgrade.
 - The ST vision of a fusion nuclear science facility.
- Next slides: some nearer term needs & desires

Q1: Realtime Axisymmetric Control

- Need a reliable algorithm for the individual and combined control of the current and rotation profiles, along with β_N .
 - The theory of that algorithm should help us to understand to what extent these quantities can be independently controlled given the coupled actuators V_{loop}, P_{ini}, J_{NBCD}, T_{NB} and T_{NTV}.
- More generally, need the ability to test the actual control algorithms in simulations with high degrees of physics fidelity, i.e. flight simulator mode.
 - Could in principle be accomplished by connecting PCS to PTRANSP, CORSICA, or TSC.
- Need the ability to predict the future equilibrium and stability properties of the plasma.
 - "Forecasting" or "faster than realtime look-ahead" of the evolution of the equilibrium
 - (Very) reduced transport models.
 - Future coil currents and boundary shape.
 - Stability assessments of those future states (n=0, n=1, ELM?).
 - Control intervention based on the predictions.
 - Need to be integrated in the structures imposed by GA PCS.

Q2: Stationary, High β , **100% Non-Inductive Operation**

- Prediction of the disruptive β_N limit.
 - How close to the ideal wall can we actually operate, as a function of profiles and feedback actuators.
- NBCD with *AE modes
 - At higher values of β_{fast} , *AE modes can lead to redistribution/modification of the fast ion distribution.
 - Theory & reduced models are needed for when these modes will turn on, and what their effect on the pressure & current profile will be.

• Prediction of the thermal & momentum transport

- The current and rotation profiles are intimately connected to transport and global stability.
 - And vice versa.
- Ideally, want reduced models like TGLF for the core and pedestal thermal and momentum transport, integrated into transport codes like TRANSP.
- Would settle for clear predictions for profile moments and characteristics as a function of relevant engineering and/or dimensionless parameters.
 - For instance, pedestal height projections, core density peaking scaling,...
- Need accurate, benchmarked models for HHFW and EBW H&CD within integrated codes such as TRANSP.
 - Need to predict interactions with fast ions, and the effect on current drive
 - and probably SOL losses as well (can this exist in TRANSP?).
- Need a divertor that works...