## H-mode edge pedestal - prediction for pedestal height (and width)

(A) Comprehensive first-principles simulations applicable to pedestal, strong gradient

- general geometry, multiple species, collisions, electromagnetic, flows, profiles
- (B) Tests of peeling-ballooning stability; prediction of microinstability thresholds
- (B) Empirical/semi-empirical scaling of pedestal height & width?

## H-mode core: thermal driven transport (next slide)

- (A) Comprehensive first-principles simulations with all necessary physics:
  - general geometry, multiple species, collisions, electromagnetic, flows, global
- (B)Tests of theory-based transport models
- (B) Incorporate non-local effects in local theory-based transport models?

#### H-mode core: fast particle driven transport

- (A) Simulations of fast particle driven instabilities and transport ( $\chi_e$ ,  $\chi_{\phi}$ , D<sub>j||</sub>)
- (B) Development of theory-based models?
- (B) Empirical/semi-empirical scaling of near-axis  $T_e$ ,  $V_{tor}$ ,  $j_{\parallel}$  profile with  $n_{fast}$ ,  $\beta_{fast}$ ,  $\nabla\beta_{fast}$  etc...?



## Simulation and modeling work being done for NSTX core

## Non-linear gyrokinetic simulations (GYRO)

- Local ETG
- Local microtearing

("low beta" H-mode) ---->

- Local TEM Local ITG
- ("low beta" H-mode) (L-mode)
- Working towards global GYRO simulations for all of the above
  - Benefit from benchmarking (GTS,XGC1 ...) but need collisions, EM, flows, etc...

## **Testing TGLF reduced transport model**

- Standalone tests of TGLF linear stability and transport model with linear and non-linear gyrokinetic simulations
- Predictive transport simulations using TGYRO+TGLF+NEO
- ⇒ Will require boundary condition (pedestal height) and additional core effects (non-local and/or fast particles)





# Improvements in analytic microtearing theory could be useful for developing reduced transport models

• NSTX microtearing mode considerations (Guttenfelder et al. PoP 2012a,b):



- Wish for improved linear stability theory with quantitative accuracy:
  - Arbitrary collisionality ( $v^{e/i}/\omega$ ) and magnetic shear
  - Account for ballooning  $A_{\parallel}(\theta)$ , toroidicity and trapped particles
  - Influence of electrostatic potential is unclear (shielding through Z<sub>eff</sub> + adiabatic response)
  - Prediction of linear thresholds  $(a/L_{Te})_{crit}$ ,  $(\beta_e)_{crit}$
- Theory improvements for saturated spectrum?
  - Balance of linear growth and damping through non-linear transfer?
  - Influence of island overlap and stochasticity

