Resistive MHD (Nimrod) simulations

CHI status and plans

(Working document – not reviewed)

Bick Hooper, LLNL

PPPL discussion March 2, 2012

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Results as of APS — Shot 142163

- The HIT-II model been generalized
 - Voltage across the injection gap --From a model of the NSTX PS
 - Current -- measured from R*B_m at the gap and coupled to PS
 - Injected plasma and toroidal flux --extracted at absorber by ExB flow
- Evolves using NSTX time-dependent • boundary conditions (including wall eddy currents) --- demonstrated
- **Discharge currents and current** amplification (toroidal current/ discharge current) --- approximate agreement with experiment
- Ohmic heating and thermal conductivity (along open field lines) --temperatures in approximate agreement with experiment
- Simulations show an n=1 mode --- an instability in the current channel with poloidal wavelength 0.1-0.3 m, an helical structure at the surface of the expanding flux bubble

6.65 ms

1.5

;

0.5

-0.5

-1.0

ŝ

0

(m) 0.0

8.46 ms

13.28 ms

- Power supply capacitor charging voltage: simulation = 0.75 kV; Notes: experiment=1.5 kV.
 - The voltage rise time in the simulation differs from the experiment in part as there is no pre-electrical breakdown period; thus the power supply inductance limits the rate of rise.

Also, there is added power-supply damping for stability reasons.

Ongoing work – progress since APS

Demonstrated resistive flux closure (reconnection near injector) during decay

• However, the enclosed volume was small. Further research is needed

Devised and tested means of improving the response in the plasma outside the expanding flux bubble

- The problem: Compression and bending of poloidal field lines generates current. This heats the downstream plasma locally; Te increases and the current persists (locally) and grows
- The solution: The temperature outside the flux bubble is reset each time step
 - There is a range of "optimum" temperatures that allow compressing and bending field lines without generating excessive currents

There is an apparent optimum at $\rm T_{e0}$ =0.5-1 eV

This is consistent with estimates of magnetic (resistive) diffusion

Underway: determining the voltage requirements to approx. match experiment — finding that V_{inj} is closer to exp. than in earlier simulations

Physics plans

- Near term: Complete simulation-based physics study of CHI in NSTX
 - Understand the implications of the sensitivity to the downstream plasma temperature for experimental optimization, e.g. by impurity control, auxiliary heating, etc.
 - Quantify the influence of the time-changing surface flux on the dynamics of CHI.
 - Determine the conditions for generating flux-surface closure at the end of the injection time, as in the experiment. (e.g. resistive effects, localized magnetic fluctuations).
 - Complete quantitative comparison with experiment.
 - Determine scaling of electron heating and temperature, etc. during CHI, with injection parameters and the resulting effect on plasma current, size, flux-surface closure, etc.
 - Demonstrate ohmic (loop-voltage) drive of plasma current in the closed flux region; compare with experiment. (collaboration with Ibrahimi)
- Longer term: Extend the CHI modeling to NSTX-U
 - Build model of NSTX-U in NIMROD; demonstrate CHI.
 - Determine characteristics of helicity injection in the new geometry, scaling of plasma current with bias magnetic flux, injected current, etc. Compare results to those from NSTX.
 - Examine current drive in the injected flux region, initially using a loop voltage. (collab. With Ebrahimi)
 - Model current drive by neutral beams; determine conditions to successfully drive the current (e.g. is additional heating needed?), maximize plasma current, etc. (Ebrahimi to lead)

Note: This work is in collaboration with Carl Sovinec; Fatima Ebrahimi will also be participating — our work will be coordinated to ensure maximum progress