Using scrape-off-layer convection & currents to control the tokamak edge plasma

<u>Ilon Joseph</u>¹, Ron Cohen¹, Tom Rognlien¹, Dmitri Ryutov¹,

Vlad Soukhanovskii¹, Hiro Takahashi², Stewart Zweben²

¹Lawrence Livermore National Laboratory

²Princeton Plasma Physics Laboratory

NSTXU 2014-18:

Theory & Computation Brainstorming Session

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-534498

Non-axisymmetric divertor variations can be used to mitigate target exhaust

 $\Phi(\mathbf{x})$

J∥(X

-V

 δB

δR

SOL

target

+V

 V_{ExB}

- Controlling the steady-state electrostatic potential profile controls both perpendicular flows and parallel currents
 - Can be controlled by manipulating divertor conditions near target plate, e.g. direct electrical biasing of target plates
- Electrostatic convection¹ can be used to spread target plate heat and particle fluxes
 - High enough mode #'s needed to exceed background transport levels
- Parallel currents² can be used to generate relatively large resonant magnetic perturbations
 - Control pedestal transport
 - Control or trigger ELMs?
 - Requires low toroidal mode #'s to improve geometric coupling efficiency

¹R.H. Cohen and D.D. Ryutov, Nucl. Fusion **37** 621 (1997)

²I. Joseph, R.H. Cohen and D.D. Ryutov, Phys. Plasmas **16** 052510 (2009)

2 I. Joseph, NSTXU 2014-18 Theory & Modeling

Potentials can be driven by divertor asymmetries rather than by direct electrical biasing

- For a reactor, hardware components inside the vacuum vessel are severely constrained
 - Large magnetic forces
 - High neutron fluxes
 - Substantial power requirements

Reactor-relevant methods need to be tested

- Asymmetric neutral gas pumping and/or fueling
- Asymmetric neutral and/or impurity radiation
- Variation of target plate angle with respect to field lines
- Variation in material composition of target plates:
 - Li depositon to control recycling
 - secondary electron emission, conductivity
- We've explored techniques based on nonaxisymmetric neutral pumping and injection
 - Flux tube studies imply that ~20-40% of $I_{\rm sat}$ can be driven
 - ITER divertor more rigid due to tilted plates
 - only a few % of I_{sat} can be driven
 - Pumping predicted to be more efficient than injection

