

NSTX Theory/Computation Needs Brainstorming Workshop

- Introduction -

S.M. Kaye, PPPL

PPPL March 2, 2012

Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **U** Quebec

Columbia U Comp-X **General Atomics** Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Rochester **U** Washington **U Wisconsin**

College W&M

Motivation

- Preparation for 2014-2018 Five Year Plan forming the basis of the research plan for NSTX-U
- The meeting will attempt to address key issues from the perspectives of both experiment and theory (including modeling/CPPG), and seeks:
 - Ideas and presentations from members of the NSTX-U experimental research team describing needed capabilities from existing or new theory and simulation to support NSTX-U research goals
 - Ideas and presentations from the NSTX-U and PPPL theory and simulation communities describing what new experiments and/or measurements are needed to better support the development or interpretation of theory and simulation

Macrostability

- Can we develop a full 3D model for equilibrium and stability?
 - Kinetic effects, rotation, RWM, etc
 - Lowest level (i.e., linear)
- How do non-linear effects impact the equilibrium and stability?
 - NTMs, islands
- How does the high density gas plume (for disruption mitigation) penetrate through the SOL and into the plasma edge?
 - Only a fraction gets through

Category	Existing efforts	Associated physics issues
Improved equilibrium	- EFITs including rotation	- Stability boundary with toroidal rotation?
reconstruction including toroidal	- LRDFITs including rotation	- Stability boundary including separatrix?
rotation, MSE, and SOL currents,	- (E,LRD)FITs + FLOW	- Can be routinely available between shots, with rea
and stability analysis	- (E,LRD)FITs + FLOW + M3D-C1	time MSE, in NSTX-U?
Quasi-linear 3D equilibrium	- IPEC with tensor pressures and	- 3D equilibrium with opened islands?
modeling including islands,	islands + POCA + Inner-layer	- 3D equilibrium with rotation?
neoclassical, and kinetic MHD	- FLOW, MARS-F, MARS-K	- 3D equilibrium with anisotropic pressures?
effects	- M3D-C1	- Self-consistent modeling for NTV in NSTX-U?
Quasi-linear stability modeling	- MISK with improved theory	- RWM passive stability with 2 nd NB in NSTX-U?
including neoclassical and kinetic	including anisotropic pressure	- Effects of self-consistent eigenfunction?
MHD effects	- MARS-K, NOVA-K - M3D-C1	- Second RWM code with full kinetic treatment?
Non-linear (as well as linear) 3D modeling for time-evolving	- M3D-C1 with distribution function solver (Ramos theory or NTV theory)	- Non-linear effects in 3D equilibrium and stability, including SW (q=1) and NTM?
dynamics of islands, neoclassical,	- XGC0	- Two fluid effects in 3D equilibrium and stability?
full kinetic MHD effects		- Full kinetic effects in 3D equilibrium and stability?
Disruption simulation, including	- DEGAS2 for gas penetration	- Gas penetration with atomic physics?
MCI, gas penetration physics, and	- TSC for runaway electrons	- Runaway electrons in NSTX-U?
runaway electrons	- M3D for disruption simulation	- Coupling gas and plasma modeling?
	- Use of 3D equilibrium sequence	- Why does mode locking cause a disruption?
		- What is the origin of a density limit disruption?
Full 3D modeling of external	- Multi-mode VALEN3D	- Full 3D current effects on RWM?
structure for RWM dynamics	- Plasma permeability with	- Effects of full 3D + kinetic plasma permeability on
	neoclassical and kinetic MHD effects	RMW stability and control?
	- VALEN3D + Plasma permeability	- RWM state space controller.

(NSTX

Lithium Research

- Why does lithium alter the core plasma transport and suppress ELMs?
- (How) Can we use lithium for particle and power handling?
- Can we develop a predictive capability for PMI and nearsurface plasma behavior?
 - + technology -> Can we develop viable Li-based PFCs for future devices?

Lithium Research

- Effects of Li on core plasma transport and ELMs
- Use of Li as a plasma-facing material to
 - Control core plasma deuterium and impurity content
 - Increase heat load/pulse length handling
- Quantification of Li-related effects
 - Amount of radiation in divertor and SOL
 - Impact on character of disruptions
- Study of plasma-material interactions and/or near-surface plasma behavior
- Development of viable PFC concepts for FNSF, DEMO, and other future devices
 - Include flowing liquid metal systems (Li or other)

Waves and Energetic Particles

- How do you maximize the HHFW power to the core plasma?
 Minimize fast ion absorption, SOL losses
- Can we describe non-linear coupling between the fast ion population and fast ion (and other MHD) modes?
 - AE stability and quasi-linear diffusion

Waves and Energetic Particles

- Improve and validate tools for *AE calculations
 - Include externally-driven perturbations into existing codes (TAE-CAE/ GAE)
- Improve computation of fast ion distribution evolution in TRANSP
 - Validated *AE transport models; close loop between experiment and models
- Model RF power losses in SOL in NSTX-U H-modes
 - Extend RF models: divertor regions, RF sheaths, PDI
- Model HHFW current drive in HHFW-only and HHFW+NBI H-modes
 - Supports goal of 100% non-inductive operation
- Model HHFW interaction with NB ions
 - Orbit/RF code coupling; non-linear coupling

Solenoid-Free Startup

- What is the mechanism that allows for the formation of closed flux surfaces, and how does it scale?
 - Coaxial and point source helicity injection
- What are the limits as far as current density on electrodes?
 - Erosion/recycling/transport

Solenoid-Free Startup

- Use of resistive 3D model for determining conditions of generating flux-surface closure
 - Understand scaling of CHI current generation to larger devices
- Use 2D and 3D MHD models to determine the scaling of electron heating, temperature, transport etc. with injection parameters
- Develop 3D MHD model of point source helicity injection
- Understand requirements for current drive by NB (RF?) in CHI or point source helicity injection generated target
- Understand the relation between electrode-driven current
 and impurity generation
 - Impact on performance of resulting discharge

Boundary Physics

- What physical processes are responsible for determining the SOL width?
- What physical processes are responsible for the formation of the edge pedestal?
- What are the roles of transport and atomic physics in determining plasma-surface interactions?

Boundary Physics

- SOL width, transport and turbulence
 - Convective cells, Li effects, edge flows (blobs)
 - Physics of collisionless SOL
- Pedestal and ELM physics
 - Role of Li in suppressing ELMs
 - Pedestal formation: role of neutrals, test and develop testable models, develop predictive capabilities for pedestal height and width
 - SOL currents and ELMs
- Divertor transport, radiation and PMI
 - Validate steady-state and transient transport models
 - Validate radiation models that include high-Z
 - Validate PMI models
 - Perform in standard and snowflake divertor configurations

Transport and Turbulence

- What are the elements necessary for developing a full interpretive and predictive capability for plasma transport?
 - Core, gradient, pedestal regions
 - Develop synthetic diagnostics for validation of turbulence and transport models

Transport and Turbulence

- Pedestal region (r/a>0.9)
 - Develop/validate pedestal models (engineering vs physics variables)
 - Measure pedestal turbulence and validate models with gyrokinetics
 - Prediction of micro-instability thresholds
- Gradient region (r/a~0.4-0.9)
 - Model validation (reduced models vs gyrokinetics)
 - May need global, multi-scale simulations
 - Reconcile anomalous momentum/electron transport with neo ions
- Core region (r/a<0.4)
 - T_e profile flattening; influence of fast ion instabilities
 - Develop reduced models, turbulence spreading between coregradient
- Develop suite of synthetic diagnostics integrated with numerical codes (facilitate validation)

Advanced Scenarios and Control

- Can we develop viable actuators and algorithms for full axisymmetric control?
 - Profile control (current, pressure,...)
 - Full geometry control (boundary, strike points, ...)
- Can we develop a high-b, steady-state ST plasma scenario that projects to fusion power generation?
 - Full non-inductive current drive

Advanced Scenarios and Control

Realtime control

- Need reliable algorithms for individual and combined control of current, rotation profiles, β_{N}
- Need ability to test algorithms in simulations with high degree of physics fidelity (flight simulator mode)
- Need ability to predict equilibrium and stability properties of the plasma (present and future)
- Scenario development
 - NBCD with *AE modes
 - Prediction of thermal and momentum transport
 - Accurate models for HHFW, EBW H&CD in codes such as TRANSP

