

Supported by

College W&M Columbia U Comp-X **General Atomics** Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC Irvine** UCLA UCSD **U** Rochester **U** Washington **U Wisconsin**

Needs for Predictive (and Interpretive) Particle and Momentum Transport Modeling

S.M. Kaye, PPPL

PPPL March 2, 2012

Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **U** Quebec

Particle Transport

Particle transport governed by:

$$\frac{\partial n}{\partial t} = S_{in} - \frac{1}{r} \frac{\partial}{\partial r} [rnv_r]; \qquad S_{in} = S_{beam} + S_{wall}$$

- S_{beam} generally "well-known"
 - Determined from collisional processes, sometimes with AFID
 - Match neutrons by adjusting n₀
- S_{wall} is computed in a simplistic fashion
 Assumed n₀, 1D neutral transport model
- Can infer particle D in core region, where beam source dominates
- D outside r/a~0.5 highly uncertain
- Need better determination of
 - S_{wall}
 - Up-to-date particle transport calculations (physics model for pred.)
- Critical to both interpretive and predictive modeling

Momentum Transport

Theory/Computation Needs

Momentum Transport

- For full interpretive/predictive modeling, need to include all torques.
- Missing is residual stress •
 - Conversion of turbulent energy to directed flow
 - Needs toroidal symmetry breaking of turbulence wave propagation
 - Develop reduced models from gyrokinetic calculations
 - Verify and validate analytical models (Weiland, MMM,...?)
 - Use empirical expressions (Solomon, sub. to NF (2012):

1.5

A DIII-D NSTX

1.0

 $\propto \nabla p$