

Supported by

New δf Particle Code for Calculation of Non-Ambipolar Transport and NTV

Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U ORNL **PPPL Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Kimin Kim Jong-Kyu Park, Gerrit Kramer, Allen Boozer

Theory and Computation Brainstorming Meeting March 2, 2012

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **NFRI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep

POCA is drift-kinetic δf particle code to calculate neoclassical transport with 3D magnetic perturbations

- POCA (Particle Orbit Code for Anisotropic pressures)
 - Follows guiding center orbit motions in (ψ , θ , ϕ , v_{\parallel}) space
 - Solves Fokker-Plank equation with modified pitch-angle scattering collision operator conserving toroidal momentum
 - Calculates local neoclassical quantities: Diffusion, flux, bootstrap current
 - Directly calculates anisotropic tensor pressure and NTV
 - Uses IPEC type routines, ready for 2D or 3D equilibrium coupling, and parallelized
 - Designed to easily handle 3D magnetic field information: 2D equilibrium from EFIT, ESC and 3D perturbation from IPEC and analytic model

POCA is being successfully benchmarked

Now, NTV calculation has been implemented in POCA

NTV is calculated by anisotropic pressures and magnetic field spectrum

$$\frac{\delta B}{B_0} = \delta_{mn} \sum \cos(m\theta - n\phi) \qquad \longrightarrow \qquad \left\langle \hat{\phi} \cdot \nabla \cdot \vec{P} \right\rangle = \left\langle \frac{\delta P}{B} \frac{\partial B}{\partial \phi} \right\rangle = B_0 \sum n \delta_{mn} \frac{\delta P}{B} \sin(m\theta - n\phi)$$

- Benchmarking test of NTV calculation with theory is underway
- Calculated NTV torque profile shows very similar shape with theory revealing resonant and non-resonant features, but discrepancies still exist depending on collisionality
- Under investigating possible reasons (physics or numerical?)

POCA will be upgraded to be applicable for experimental analysis and integrated with IPEC (GPEC)

- POCA will be extended to experimental analysis
 - POCA can read geqdsk file for 2D equilibrium and combine with 3D magnetic perturbation from IPEC
 - With temperature and density profiles, POCA will be able to calculate NTV torque and rotation damping in NSTX(-U) and other tokamaks
 - Presently, ExB shear rotation and potential are neglected, but will be included in the near future
- POCA will be integrated to GPEC (General Perturbed Equilibrium Code)
 - GPEC will solve 3D force balance with general jump conditions at the layer and tensor pressure (or general force)
 - POCA will provide non-ideal tensor pressure to GPEC
- Technical issues remain
 - POCA was parallelized with MPI but there is still room for improvement of computational efficiency (e.g. interpolating magnetic field information, optimizing code structure)
 - Need to properly define the annulus width, which could affect calculation results
- POCA will be ready to support the analysis of 3D physics in NSTX-U

GPEC will provide free-boundary perturbed tokamak equilibria, with arbitrary force and jump conditions

• IPEC uses perturbed scalar pressure force and ideal jump conditions

$$\vec{\nabla}\delta p = \delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} \text{ with } \left(\delta \vec{B} \cdot \vec{\nabla} \psi\right)_{nn} = 0$$

• GPEC will use any perturbed force and general jump conditions

$$\delta \vec{f} = \delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B}$$
 with given $\left(1 \text{ or } \frac{d}{d\psi}\right) \left(\delta \vec{B} \cdot \vec{\nabla} \psi\right)_{mn}$

• Presently, large resonant solutions were resolved by solving force balance in the 'field' frame, rather than the 'displacement' frame. So now we can solve

$$\vec{\nabla}\delta p = \delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B}$$
 with given $\left(1 \text{ or } \frac{d}{d\psi}\right) \left(\delta \vec{B} \cdot \vec{\nabla}\psi\right)_{mn}$

This version can provide linear resistive stability, such as tearing mode index with full coupling or with external 3D fields, and perturbed equilibria with partially or fully opened islands, etc

• Next, perturbed anisotropic pressure force and layer conditions will be included

$$\vec{\nabla} \cdot \left(\delta p_{\perp} \vec{I} + \left(\delta p_{\parallel} - \delta p_{\perp} \right) \hat{b} \hat{b} \right) = \delta \vec{j} \times \vec{B} + \vec{j} \times \delta \vec{B} \quad \text{with given} \left(1 \text{ or } \frac{d}{d\psi} \right) \left(\delta \vec{B} \cdot \vec{\nabla} \psi \right)_{nn}$$

POCA (or theory)

Layer theory by Rutherford, Boozer, Fitzpatrick, or an inner-layer solver

