MHD aspects of NTSX-U & Theory cooperation

Leonid E. Zakharov

Princeton Plasma Physics Laboratory, MS-27 P.O. Box 451, Princeton NJ 08543-0451

NSTX Theory and Computation brainstorming meeting,

PPPL, Princeton NJ, March 02, 2012

¹This work is supported by US DoE contract No. DE-AC02-09-CH11466.

Linear stability and perturbed equilibria in NSTX-U

Leonid E. Zakharov, Luca Guazzotto

Objectives	Comprehensive consideration of linear and quasi-linear MHD stability. It includes:
	 (a) creation of a quasi-linear tokamak equilibrium code (PEQC) for 3-D perturbations; (b) extension of stability analysis to the plasma edge, including separatrix; (b) use PEQC for simulation of external perturbations at the plasma edge in NSTX-U; (c) extension of PEQC to self-consistent simulations of the Scrape off Layer currents. (d) addressing the needs in stability analysis of the LiWF regime on NSTX-U with finite current density and pressure gradient at the separatrix. (e) performing 3-D (quasi-linear) simulations of the wall touching kink mode (WTKM)
Motivation	 (a) ideal MHD is insufficient for understanding edge stability of NSTX-U plasma; (b) the existing IPEC is not an equilibrium code (extension of the ideal MHD DCON); (c) the use of vacuum field perturbations neglects the plasma response; (d) attempt to reveal the physics mechanism of the thermal quench.
Scope of work 1 ZFTE [*]	(a) implementation of ψ -form of the energy principle (advantages: driving effects are explicit, applicable for both ideal and non-ideal plasma, simple interface with equilibrium, no convergence problem); (b) work is in progress on a reduced MHD version of PEQC under IO contract on RE; (c) development of full version of PEQC.
Validation:	New, ψ - form of energy principle resulted in 2005 in predictions of stabilization of ELM in Li assisted regimes
Application:	 (a) global stability, beta limits and edge stability in NSTX-U in the presence of RMP and active plasma control; (b) simulations of RE production and losses by interfacing PEQC with IO set of codes on plasma jet and energetic particle modeling.
Deliverables:	(a) Guidance and assistance in developing the lithium wall fusion regimes; (b) provide practical tools for simulation of thermal quench, WTKM and RE losses; (c) create a science based bridge for application of NSTX stability results to ITER.

* **ZFTE** stands for one year Zakharov's full time equivalent.

X

Leonid E. Zakharov, NSTX Theory and Computation brainstorming meeting, PPPL, Princeton NJ, March 02, 2012

Hiro currents and simulation of vertical instability

Leonid E. Zakharov

Objectives	Create understanding of VDE and interpretation of plasma-to-wall currents in NSTX-U
	(a) develop a realistic numerical model of vertical instability;
	(b) create a practical model for 3-D conducting in-vessel elements of NSTX-U;
	<i>(c) provide a guidance for designing special tiles for measuring the Hiro currents; (d) clarify the role of Hiro, Evans, eddy, and "halo" currents in VDE.</i>
Motivation	(a) Theory has undermined the community shared paradigm of "halo" currents;
	<i>(b) "halos" have been dismissed as asymmetric wall currents in all JET VDEs;</i> <i>(c) VDE is the cleanest case for developing a basic understanding of disruptions;</i>
	(a) modify ESC code for simulation of a n=0 linear vertical mode in NSTX-U;
	(b) provide a guidance for installation in NSTX-U Hiro currents sensors (as in EAST);
Scope of work 1 ZFTE [*]	(c) create a 3-D model of the conducting in-vessel components of NSTX-U using Cbshl code;
	(d) modify ESC for simulations of VDE, including plasma-wall current sharing.
Validation:	(a) calibrate the 3-D wall model against calibration shots in LTX and NSTX-U;
	(b) reproduce both magnetic signals and tile/Hiro currents in VDE in NSTX-U;
	(a) amplitudes and localization of forces for design purposes;
Application:	(b) appropriate interpretation of measurements for the plasma stability control;
	(c) assessment of VDE effects on the liquid lithium layers in NSTX-U;
Deliverables:	(a) realistic physics & numerical model of VDE in tokamaks;
	(b) new diagnostics for the Hiro currents in the wall;
	(c) simulation tools for assessing the effect of VDE on ITER beryllium tiles.

* **ZFTE** stands for one year Zakharov's full time equivalent.

X

Leonid E. Zakharov, NSTX Theory and Computation brainstorming meeting, PPPL, Princeton NJ, March 02, 2012

3-D magnetic fields and equilibria

Leonid E. Zakharov, Egemen Kolemen, Samuel Lazerson

Objectives	Develop fast numerical tools for 3-D analysis in NSTX-U and 3-D equilibria in general
	(a) implement Hamada principle (unused since 1960) for the case of good flux sur- faces.
	(b) implement the Reference Magnetic Coordinates (RMC) for ergodic fields; (c) create a fast 3-D equilibrium code LEE based linearized equilibrium equations.
	(a) needs of plasma edge physics (RMP, SoL) and disruptions simulations;
	(a) widely used VMEQ does not treat properly 3-D resonance surfaces;
Motivation	(b) PIES with tracing field lines is slow and impractical;
	(c) two innovative elements in 3-D theory: LEE and RMC promise high performance.
	(a) develop a 2-D version of LEE for fast calculations of tokamak equilibria;
Scope of work 2 ZFTE [*]	(b) extend the 2-D version on tokamak configurations with perturbed magnetic field;
	(c) develop a 3-D version for configurations with good flux surfaces;
	(d) implement the RMC into LEE for configurations with ergodic magnetic fields.
Validation:	(a) benchmark against 2-D ESC;
	(b) use of LSODE with a prescribed accuracy in solution.
Application:	(a) RMP-ELM analysis of NSTX-U plasma;
	(b) 3-D effects from the in-vessel conducting components in NSTX-U;
	(c) assessment of VDE effects on the liquid lithium layers in NSTX-U;
Deliverables:	(a) science based loop hole free 3-D equilibrium solver;
	(b) a basic component of the disruption simulation code.

* **ZFTE** stands for one year Zakharov's full time equivalent.

X

Leonid E. Zakharov, Sergei Galkin (FAR-TECH, Inc)

Objectives	Create a DSC and MHD simulations basis consistent with the basic properties of the tokamak plasma: high anisotropy, and unrestricted motion to the wall.
	 (a) implements RMC based grids, consistent with the high plasma anisotropy; (b) create the free boundary plasma with no wide spread "salt water" limitations; (c) interface the core MHD with the boundary physics and realistic wall geometry; (d) following Kadomtsev-Pogutse get rid of magneto-sonic limitation on the time step
Motivation	Implementation of an appropriate plasma physics into MHD simulations is urgent: (a) 3-D MHD codes use hydrodynamics, rather than plasma physics, schemes; (b) NIMROD and M3D are irrelevant to tokamak disruption physics because of Vn=0; (c) Both failed of addressing critical ITER needs in assessing disruption forces ; (d) Wall touching kink mode (WTKM) needs to be simulated;
Scope of work 2 ZFTE [*]	 (a) implementation of two versions of adaptive grids: (1) clouds of points, (2) RMC; (b) interfacing core plasma calculations with 3-D model of the in-vessel structures of tokamaks; (c) validation of model against the LTX (in future NSTX-U) calibration shot data; (d) initiation of regular simulations of VDEs mixed with kinks in NSTX-U.
Validation:	(a) reproducing in simulation the JET VDEs measurements;
Application:	(a) ITER urgent needs in resolving disruption problem; (b) identification of similarity in disruptions physics between NSTX-U and tokamaks; (c) assessment of the effect of disruption on in-vessel components in NSTX-U
Deliverables:	(a) a plasma physics based MHD numerical code for disruption simulations.; (b) 2-D version of DSC was created in 2011 and is capable of simulation of WTKM.

Leonid E. Zakharov, NSTX Theory and Computation brainstorming meeting, PPPL, Princeton NJ, March 02, 2012

X

Real Time Forecast (RTF) of tokamak discharges

Leonid E. Zakharov

Objectives	Creation of a real time mechanism for prediction of discharge parameters:
	(a) enhance the existing equilibrium reconstruction technique with variance analysis; (b) create a fast and flexible for real time modifications a transport simulation code; (c) implement the transport code profiles as "signals" in reconstruction; (d) arrange ahead-of-time (e.g., in the next $0.5\tau_E$) predictions of the discharge.
Motivation	ITER: no more empirical approach for specifying disruption-free operations space.
	(a) rigorous theory was created for assessing validity of equilibrium reconstruction. (b) ESC was complemented with new abilities;
	(c) ASTRA transport code is interfaced with ESC; in 2007 demonstrated RTF abilities;
Scope of work 0.5 ZFTE*	 (a) implementation of variances technique into equilibrium reconstruction; (b) development an interface of equilibria with a separatrix and transport codes; (c) utilization of the transport calculated profiles as signals in reconstruction; (d) arrange both real time adjustment and predictive mode for transport simulations. (e) real time interface with NSTX-U diagnostics;
Validation:	(a) post discharge reproduction of the experimental data on NSTX-U; (b) field test of REFIT reconstruction on NSTX-U enhanced by RTF abilities;
Application:	(a) plasma control for NSTX-U, DIII-D and for JET, EAST, KSTAR, ITER; (b) validation of the transport and stability models for tokamak plasma;
Deliverables:	(a) ASTRA-ESC code system s a prototype of RTF; (b) enhanced plasma control system for NSTX-U;

X

6/7

Flux tube equilibria at the plasma edge

Objectives	Create an understanding the flux tube phenomena at the plasma edge in NSTX-U.
	(a) create the basic theory mechanism for consideration of flux tube configurations; (b) implement the theory into 3-D flux tube numerical code; (c) interface the code with NSTX-U measurements for developing interpretation;
Motivation	Simplistic understanding of the plasma edge as a set of flux surfaces was shaken by RMP experiments on DIII-D and SoL measurements.
	 (a) there is no basic justification of the "ideal" MHD plasma model for edge stability; (b) DIII-D proved that field lines from the pedestal region are linked with the tiles; (c) the role of SoL currents is not yet revealed; (d) edge 3-D MHD remains essentially an untouched area.
Scope of work 1 ZFTE [*]	 (a) extend the space curve equilibria theory to flux tube at the tokamak edge; (b) create a numerical code for extraction of edge flux tube parameters from NSTX-U configurations; development an interface of equilibria with a separatrix and transport codes; (c) create a 3-D code (in the reduced MHD approximation) for flux tube equilibria; (d) arrange processing the NSTX-U data on flux tube events;
Validation:	(a) reproduction of the experimental measurements on NSTX-U;
Application:	(a) plasma edge stability control; (b) assessment of the edge stability in the LiWF regime.
Deliverables:	(a) the theory of the flux tube equilibria for the plasma edge and astrophysics phe- nomena; (b) the flux tube equilibrium code interfaced with NSTX-U data base.

Leonid E. Zakharov, NSTX Theory and Computation brainstorming meeting, PPPL, Princeton NJ, March 02, 2012

Mr.

