Using NSTX data to validate theory and simulations of snowflake divertors

T. Rognlien, D. Ryutov, M. Umansky, X. Xu, LLNL

- Snowflake divertors are predicted to provide important benefits
 - Divertor between-ELM peak heat-flux reduction
 - Flux expansion reduces heat-flux; larger volume for impurity radiation; may induce plasma detachment
 - Modification of ELMs; reduction of ELM peak heat-load
 - > Magnetic shear changes stability; $\beta_p > 1$ induces heatflux spreading; longer L_{||} reduces peak heat-flux
 - Increase in neoclassical orbit excursion
 - May increase between-ELM heat-flux width; orbit losses can increase E_r-well depth, stabilizing microinstabilities
- Tools developed/in-use
 - Analytic models, physical insight
 - UEDGE 2D transport simulations in SF geometry; can include Li, C, Mo
 - BOUT 3D simulations of microinstabilities and ELMs
 - Monte-Carlo drift-orbit tracking code

NSTX-U Forum

NSTX control and data needs for snowflake validation

- MHD equilibrium and larger flux expansion
 - Robust, sensitive PF coil control algorithms
 - Measure magnetic structure accurately, including shear
- Near divertor plates and wall heat-flux reduction
 - Heat-flux measurements with <1 cm resolution on plates, including all 4 snowflake divertor strike-points; some wall data
 - Divertor-plasma profiles of n_e , T_e (T_i very useful)
 - Time-resolved data for attached/detached transition; resolve ELMs (~0.2 ms)
 - Energetic ions from orbit loss
 - Scrape-off layer measurements
 - Plasma profiles of n_e, T_e (T_i very useful)
 - Turbulence near magnetic null during ELM (key for heat-flux spreading)
 - Edge E_r response to geometry change
- Impurity radiation Li, C, Mo
 - Bolometer measurements; distinguish Li, C, Mo concentrations
 - Temporal response to injected impurities e.g., neon

٠