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Some NSTX transport issues

• Global GK simulation of high-β, strongly-shaped NSTX-U can be highly
challenging
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– Capability with efficiency and robustness needed to handle high-β,
strongly-shaped NSTX-U plasmas

– A major upgrade/optimization of GTS is ongoing to remove difficulty
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Turbulence spreading and control

• Turbulence spreading effect more pronounced in ST due to small machine
size – particularly interesting for reversed magnetic shear plasmas

• Identify turbulence spreading in experi-
ments

• Identify various effects on turbulence
spreading, e.g.,
– E × B shear layer
– reversed magnetic shear

• Quantify in what extent NSTX-U trans-
port and profile are influenced by turbu-
lence spreading

• Explore possibility of creating a local
E × B shear layer to decouple confine-
ment core from strongly turbulent edge
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Effects of turbulence induced energetic particle transport

Understand possible consequence of turbulence-induced radial transport of
energetic particles

• Both ITG and TEM can significantly enhance energetic particle transport

• Impact on toroidal rotation
J × B torque associated with EP
loss could be largely enhanced
from small neoclassical level

• Impact on neutral beam current
drive – current redistribution

• How big are these effects in ST? 0 5 10 15
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Momentum transport and rotation generation

• Strong asymmetry in χφ and χi in NSTX plasmas (Kaye et al., NF’09)

– seems consistent with the story of residual turbulence driven transport
(Wang et al., PRL’09)

Prandtl number (≡ χφ/χi): P turb
r � PNC

r

• Which turbulence, e.g., ITG vs TEM, determines intrinsic rotation

• Scaling of intrinsic rotation in STs?

(ΔVφ ∼ ΔW/Ip,∇Ti in tokamak H-mode)

– relation between intrinsic rotation and electron parameters, q, dq/dr ...

• Momentum exchange and partition between bulk ions and impurities

– only impurity’s momentum measured, but large part maybe in bulk ions

– exchange via Coulomb collisions (neoclassical) and turbulence
wave-particle interactions.

– how momentum is conserved

– asymmetric in turbulent torque for main ions and impurities?
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Momentum transport and rotation generation

• Coupling of of core rotation to edge/pedestal flow/torque
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– core-peaked rotation and edge-peaked intrinsic torque observed in expt.

– strong torque could be generated by turbulence residual stress at pedestal

– turbulence spreading and flow pinch may bring edge flow/torque into core

• Identify lowest order effect for intrinsic rotation generation

e.g, up-down asymmetry vs. others (A. Boozer) – control algorithms?
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Other transport issues

Non-inductive currents

• What can modify bootstrap current

– Strong plasma gradient at pedestal/ITB

minor changes (< 10% when Δb ∼ Lp) according to GTC-NEO results
(PoP’06) (seems reasonable because Jbs mainly carried by passing
particles on which finite orbit effect is small)

– Magnetic island, magnetic perturbations (poorly known)

• Possibility of turbulence generated current
Identification: examine statistical trend of
(Jexpt

non−ind−Jbs) using large expt. databases

Turbulence and neoclassical transport with
magnetic island and 3D perturbations
MHD-turbulence interactions for island evolu-
tion ... (A. Reiman)
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