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Global GK simulation of high-3, strongly-shaped NSTX-U can be highly
challenging
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— Capability with efficiency and robustness needed to handle high-3,
strongly-shaped NSTX-U plasmas

— A major upgrade/optimization of GTS is ongoing to remove difficulty



Turbulence spreading effect more pronounced in ST due to small machine
size — particularly interesting for reversed magnetic shear plasmas
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Understand possible consequence of turbulence-induced radial transport of

energetic particles

e Both ITG and TEM can significantly enhance energetic particle transport

e Impact on toroidal rotation 6 e alp =157
J x B torque associated with EP —a— P =315
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Strong asymmetry in x, and y; in NSTX plasmas (Kaye et al., NF’09)

— seems consistent with the story of residual turbulence driven transport
(Wang et al., PRL’09)

Prandtl number (= x4/x;): PP > PNC

r

Which turbulence, e.g., ITG vs TEM, determines intrinsic rotation

Scaling of intrinsic rotation in ST's?
(AVy ~ AW/I,,VT; in tokamak H-mode)

— relation between intrinsic rotation and electron parameters, q, dq/dr ...

Momentum exchange and partition between bulk ions and impurities
— only impurity’s momentum measured, but large part maybe in bulk ions

— exchange via Coulomb collisions (neoclassical) and turbulence

wave-particle interactions.
— how momentum is conserved

— asymmetric in turbulent torque for main ions and impurities?
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e Coupling of of core rotation to edge/pedestal flow/torque
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— core-peaked rotation and edge-peaked intrinsic torque observed in expt.

— strong torque could be generated by turbulence residual stress at pedestal

— turbulence spreading and flow pinch may bring edge flow/torque into core
e Identify lowest order effect for intrinsic rotation generation

e.g, up-down asymmetry vs. others (A. Boozer) — control algorithms?
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Non-inductive currents

e What can modify bootstrap current
— Strong plasma gradient at pedestal /ITB
minor changes (< 10% when Ay ~ L;) according to GTC-NEO results

(PoP’06) (seems reasonable because Jps mainly carried by passing

particles on which finite orbit effect is small)

— Magnetic island, magnetic perturbations (poorly known)

e Possibility of turbulence generated current
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