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NSTX

NSTX is operating at sufficiently high beta to study 
global MHD mode stabilization

� Motivation
! Carry out proposed ST research on passive / active stabilization of 

global MHD modes

� Outline
! FY02 � FY03:

� Operation in wall-stabilized, high beta regime
� Resistive wall mode (RWM) and rotation damping
� Physical mechanisms for higher βN and longer pulse

! FY03 � FY05:
� Active feedback stabilization system design / installation

! FY05 � FY08: 
� Timeline for active mode control physics research
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NSTX is equipped to study passive stabilization

Machine
Aspect ratio ≥ 1.27
Elongation ≤ 2.5
Triangularity ≤ 0.8
Plasma Current ≤ 1.5 MA
Toroidal Field ≤ 0.6 T
NBI ≤ 7 MW

Stabilizing plates

Analysis 
EFIT � equilibrium reconstruction
DCON � ideal MHD stability

(control room analysis)
VALEN � RWM growth rate
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� Normalized beta, βN = 6.5, with βN/li = 9.5;  βN up to 35% over βN no-wall

� Toroidal beta has reached 35%  (βt = 2µ0<p> / B0
2 )

Design target
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Operational improvements yield higher, sustained βN

� n=1 error field reduced by an order of magnitude in 2002
� H-mode pressure profile broadening raises βN limit
� qmin > 1 maintained (EFIT qmin without MSE)
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Rotation damping rate larger when βN > βN no-wall

� Rotation damping rate is ~ 6 times larger when βN > βN no-wall

� RWM signal weak in CY02 experiments: improve sensors
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Two stages of rotation damping during RWM

� Initial stage: Global, non-resonant rotation damping

� Final stage: Local rotation damping at resonant surfaces 
appears as rotation slows

� Analogous to rotation dynamics in induced error field 
experiments
! E. Lazzaro, et al., Physics of Plasmas 9 (2002) 3906. (JET)
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Rotation damping during RWM is rapid and global

� Damping from rotating modes alone is localized and diffusive
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Te perturbation measured during RWM

� No low frequency (< 80 kHz) rotating 
modes observed during measured δTe

� δTe displacement precedes n=2 rotating 
mode
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Rotation damping strongest where mode amplitude 
largest

� Field ripple damping by neoclassical parallel viscosity ~ δBr2Ti
0.5
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Core rotation damping decreases with increasing q

� Largest rotation damping (dFφ/dt = -600 kHz/s) at Bt < 0.4T, qmin < 2
! Factor of 8 times larger than damping from n=2 island

� When qmin ~ 2, rotation damping rate is reduced and Fφ is maintained longer

� Consistent with theory linking rotation damping to low order rational surfaces
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" Typically (15 ms < τwall < 25 ms), τwall0 ≡ 20 ms
" (1.8 < Fp < 2.3); n=1 mode typically computed stable for βN< 4.5

qmin > 2
qmin < 2

W. Zhu

High βN plasmas with qmin > 2 have longer pulse length
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Plasma stabilized above no-wall βN limit for 18 τwall
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0.03 � 0.05 ms

� Plasma approaches 
with-wall βN limit
! VALEN growth rate 

becoming Alfvénic

� Fφ(0) increases as βN
>> βN no-wall

� Passive stabilizer 
loses effectiveness at 
maximum βN

! Neutrons collapse 
with βN - suggests 
internal mode

! Larger ∇ p drive, 
mode shape change

� TRANSP indicates 
higher Fp

! Computed βN limits 
conservative

30 kHz

Fφ(0)

5MW NBI

βN > no-wall limit
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Ideal no-wall βN limit exceeded and maintained 

� Ideal no-wall limit 
violated for 400 ms
! tpulse ~ 8 τE

! Computed τwallfor n = 1 mode 
decreases by 
factor of 100

! Average of 
computed τwallgives pulse 
length > 20 τwall

108730
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Active stabilization might sustain 94% of with-wall β limit

� System with ex-vessel control coils 
reaches 72% of with-wall limit, βN wall

VALEN model of NSTX
(cutaway view)
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X
Z

Control coils among plates reach only 50% of βN wall
VALEN model of NSTX
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Mode intensifies in divertor region at highest βN

βN = 5.1

VALEN / DCON computed n = 1 external mode currents

βN = 7.1

� Determine passive plate modification to optimize RWM stabilization 
in close coordination with cryopump design (FY03 effort)
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Access to βN = 8 conceptual design target exists

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
li

βN � Pressure peaking 
factor close to existing 
EFIT experimental 
reconstructed value

� Need to maintain 
elevated q as Ip is 
increased to sustain 
plasma

F. Paoletti

With-wall β limit

No-wall β limit

6 l
i

10
 l i

109025
Fp = 1.95

Fp = 1.8

Design target



NSTX

FY02 03 04 05 06 07 08 09
21 weeks/year

IPPA: 
5 year

IPPA: 
10 yr

Optimize passive stability Optimize stability with active tools

Spec and Install 
RWM control 

power supplies

Locked 
mode 
coils

RWM coil 
install/commission

internal 
vs. 

external

Passive plate mods

RWM 
diagnostics 
and 
stabilization
tools

RWM stabilization research follows a logical timeline

Magnetics upgrades, MSE CIFMagnetics (including fast), 
SXR

Internal RWM 
sensors

Passive 
plate 

stability
calcs

today

RWM 
physicsRWM & EF active control, rotation controlError fields, rotation damping 

physics
RWM/wall 

interactions

Global mode stability optimization vs. J(r), P(r), plasma shape

RWM 
control 
physics 
design

RWM 
control 

coil design
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High beta global mode stabilization research is 
being conducted according to plan 

� Passive stabilization above ideal no-wall βN limit by up to 35%
! Improvement in plasmas with highest βN up to 6.5; βN/li = 9.5

� The βN limit increases with decreasing pressure profile peaking
� Global Te perturbation measured during RWM
� Rotation damping at βN > βN no-wall has two stages

! Global, non-resonant damping
! Local, resonant field damping during final stage

� Rotation damping rate substantially decreases as q increases
� Passive stabilizers may become ineffective at highest βN

! Passive stabilizer modification coordinated with cryopump design

� Active feedback design shows sustained βN/βN wall = 94% possible
� Active feedback system engineering design is the next step


