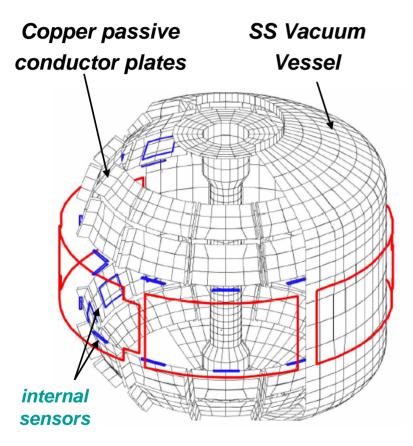


NSTX Research Results and Plans for FY06-08

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U Old Dominion U ORNL **PPPL** PSI Princeton U **SNL** Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD U Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Jonathan Menard

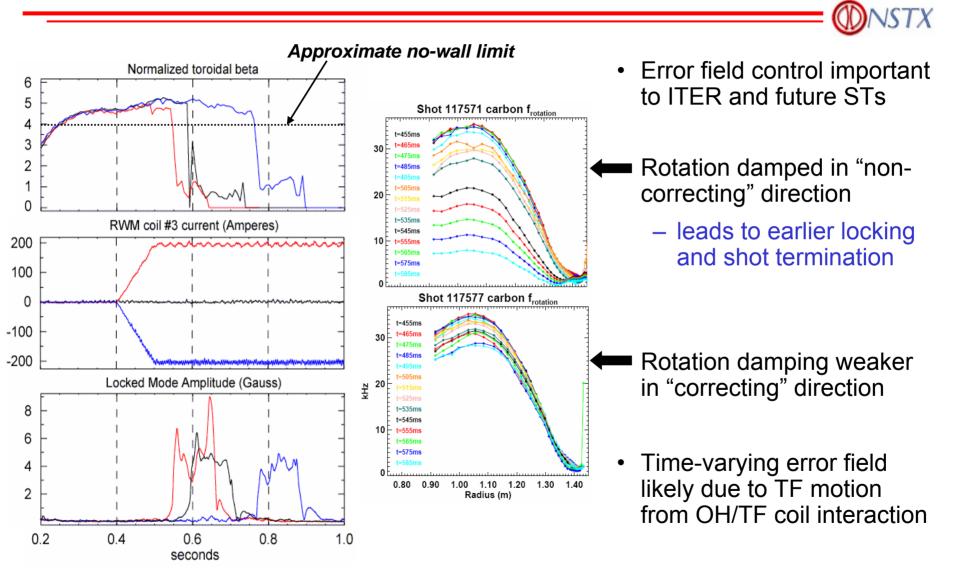
FY 2008 OFES Budget Planning Meeting Gaithersburg, MD March 14 – 15, 2006



Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokvo JAERI Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST ENEA, Frascati CEA. Cadarache **IPP, Jülich** IPP, Garching ASCR, Czech Rep

- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment

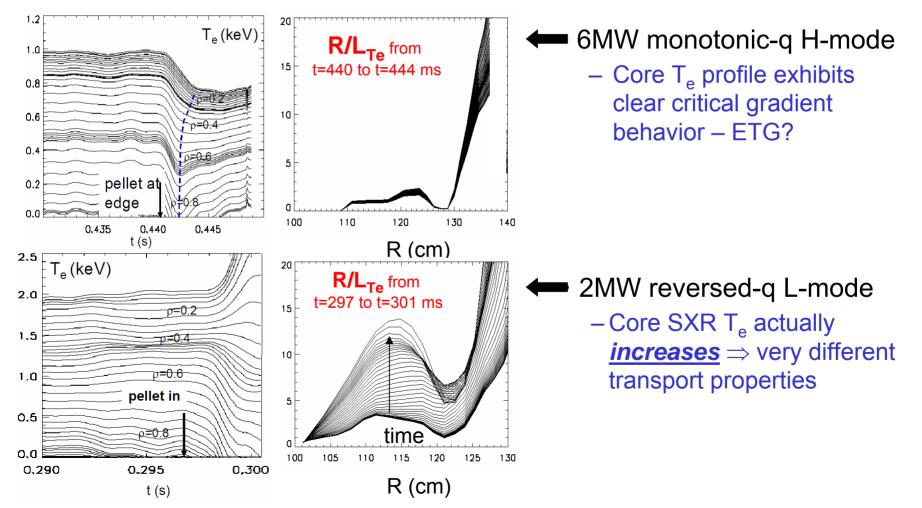
- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment


New facility and diagnostic upgrades allow testing of ITER-like active mode control system

VALEN Model of NSTX 6 ex-vessel midplane control coils

- NSTX mode control system similar to US proposal for ITER
 - Located at vertical midplane
 - Coils behind vessel wall
 - Fields couple to nearby blanket-like passive conducting structure
 - Excellent test-bed for validating ITER RWM control models
- NSTX research:
 - Error field correction
 - Plasma rotation reduction/control
 - Resonant field amplification (RFA)
 - Active RWM control

Error Field Correction aids sustainment of high β_N

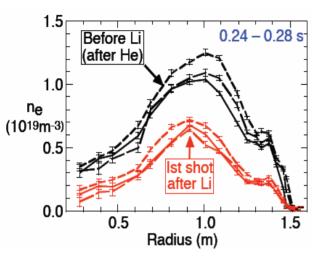

Research Plans for MHD

- First tests of dynamic error field control (DEFC) (FY06)
 - Compare to pre-programmed EF control
 - Complete low-density locked-mode experiments (MDC-6)
- Transition from DEFC to RWM control (FY06-07)
 - Use n=3 magnetic braking to slow plasma rotation below RWM $\Omega_{\rm crit}$ (MDC-2)
 - Study dependence on control algorithm, sensor type, and system latency
- Contribute to ITPA and USBPO active control effort (FY06-08)
 - MHD Task Force initiative to design joint ELM/RWM control coil for ITER
- Perform additional experiments to study EF/RWM physics (FY07-08)
 - n=1 RWM critical rotation scaling (MDC-2)
 - Study n > 1 modes: error fields, rotation damping, RFA, unstable RWMs
- Contribute to ITPA disruption database to aid ITER and CTF (FY06-08)
 - Contribute additional $I_{\rm P}$ quench-rate and new $I_{\rm halo}$ data
 - Diagnose thermal quench w/ tangential X-ray camera & multi-color USXR
 - Develop disruption onset and precursor detection and prediction
 - Develop disruption impact projections for CTF based on ITER studies

- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment

Perturbative transport experiments are elucidating the role of critical temperature gradients in electron thermal transport

- q profile reconstructed using 8 channel MSE
- Lithium pellet injection into edge to perturb Te profile
- "Two-color" SXR measures T_e profile evolution with high time resolution



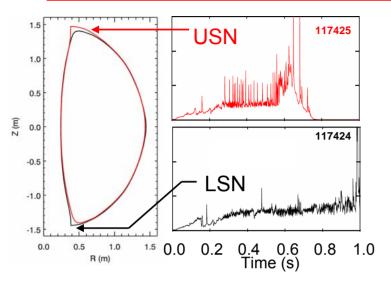
Research Plans for Turbulence and Transport

- Measure electron-gyro-scale fluctuations w/ high-k scattering system
 - NSTX provides unique opportunity: suppressed ion turbulence, diagnostic access
 - Study of reversed-shear discharges with & without eITBs (FY06)
 - Study variation of local high-k turbulence with plasma conditions (FY07) (Ph.D. Thesis)
- Extend perturbative studies of electron transport (FY06)
 - Upgraded 3-color "optical" SXR array + TESPEL (doped pellets) injection
 - Examine roles of collisionality, critical gradient and current
- Effects on transport of reducing recycling by lithium coating (FY06)
- Develop high-performance double-barrier eITB + H-mode (FY06) (TP-8.1)
- Study scaling of confinement β , A, B_T dependence (FY06) (CDB-2,6,8)
- Investigation of ion transport and heating (FY06-08)
 - Momentum transport study with NBI heating (TP-6.3)
 - Neoclassical theory as $B_P \rightarrow B_T$ (GTC-Neo), FLR effects
 - -Non-classical heating mechanisms, e.g. stochastic ion heating
- Measure poloidal rotation at low A to constrain theory (FY08)
 - Compare to neoclassical theory + full shearing rate for turbulence simulations
 - Poloidal flow shear layer important in internal transport bifurcations?

- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment

Research Results and Plans for Boundary Physics (I)

- 2005: Achieved factor of 2 density decrease using Li pellet deposition on lower divertor
 - Required injecting Li pellets for many discharges
 - Lithium passivated after only few discharges (consistent w/ amount deposited)

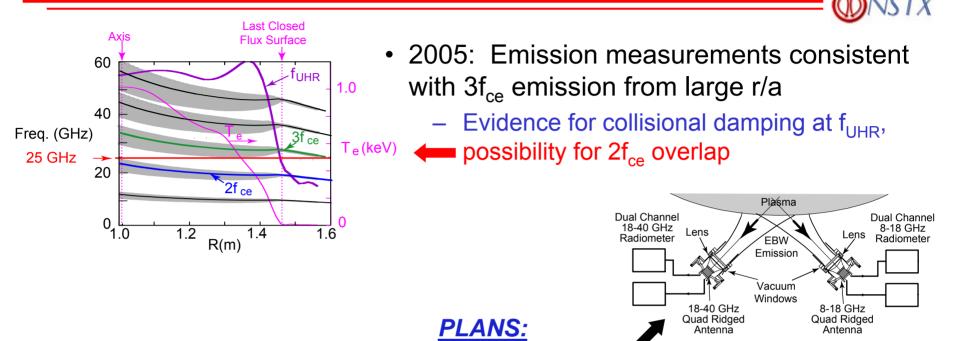

⇒ **2006 -** <u>Li evaporator</u> to deposit more Li with improved deposition control

PLANS:

• Recycling & density control with Lithium for long pulse scenarios (FY06)

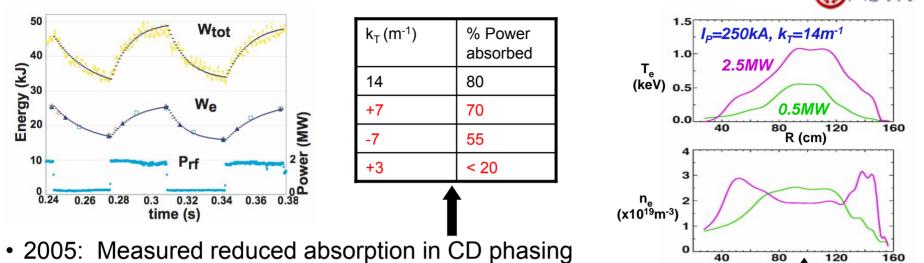
- Develop efficient fueling sources: Supersonic Gas Injection
- Control low-density locked modes with EF correction
- Characterize material migration vs. shape & pulse length (FY06-07) (DSOL-18)
 - Migration studies relevant to PFC integrity and tritium retention in ITER
- Divertor heat load mitigation/detachment at high performance, low v^* (FY06-07)
 - Document outer divertor baseline and partially detached discharges
 - Develop detachment scenarios for high performance plasmas
 - Evaluate detachment by impurity injection and impact of ELMs

Research Plans for Boundary Physics (II)


- 2005: Small change to plasma boundary ⇒ large change in ELM stability & pulse-length
 - Precise control of X-point balance made possible by using rt-EFIT (GA)
- ELM control important for ITER and CTF
 - ITER/ITPA studying role of magnetic balance

PLANS:

- Small ELM regime cross-machine comparison (FY06-07) (PEP-16)
 - Obtain complete dataset for small ELM regimes (FY07)
 - Measure ELM radial penetration depth (FY06-07) (PEP-10)
- Use aspect ratio variation to understand pedestal physics (FY06) (PEP-9)
- Further develop "enhanced pedestal" H-modes (2 × higher T_{ped}) (FY06-07)
 - First evidence of current hole in ST playing role in improved confinement?
 - Use in concert with lithium to further reduce ν^{\star}
- Characterize H-mode pedestal with poloidal CHERs (FY08)
 - Poloidal rotation measurement for complete E_r (outboard coverage initially)
 - Study role of orbit squeezing effects, E_r shearing rates in pedestal transport

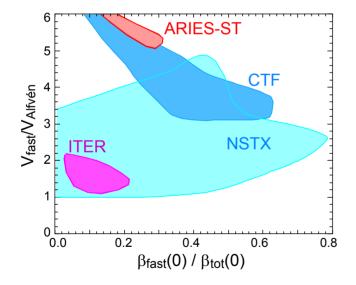

- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment

Research Results and Plans for EBW

- Test EBW coupling models for both L & H-mode plasmas (FY06) (Ph.D. Thesis)
 - Utilize remotely-steered B-X-O antennas covering 8-40 GHz
- MAST collaboration: 28GHz startup/ramp-up (FY06-07), B-X-O (FY07-08)
- Enhance modeling capabilities through collaboration (FY06-08)
 - Radial transport, Ohkawa anti-pinch effect on BS CQL3D/GENRAY [Comp-X]
 - Also EBE from non-thermal electrons same model used for ECE on ITER
 - Include EBW mode conversion in GENRAY, optimize EBWCD scenarios [MIT]

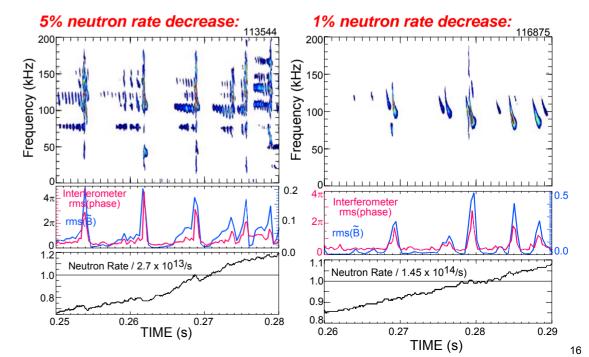
Research Results and Plans for HHFW

– Parametric decay into surface waves may explain dependence on ${\bf k}_{\rm T}$


- ICRF coupling at high power density important issue for ITER
- Produced 1keV H-mode plasmas w/ 65-80% bootstrap fraction at I_P = 250kA

PLANS:

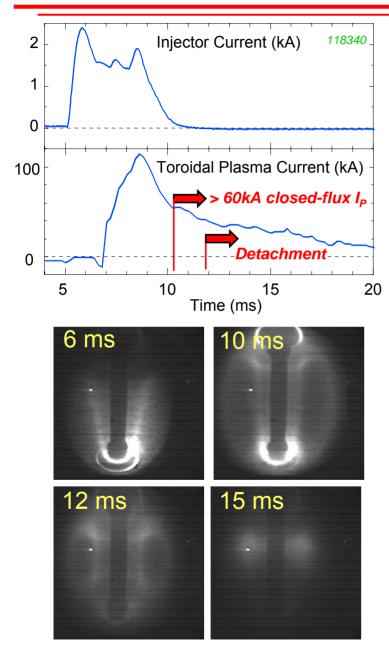
- Perform RF edge field study to investigate causes of parasitic absorption (FY-06)
 - Surface wave excitation damping + parametric decay instability ion heating
 - New RF probes to measure waves in plasma periphery
 - UCLA reflectometer upgrade to measure higher edge densities for RF studies
- Will attempt full non-inductive current ramp-up and heating of CHI target (FY06-07)
 - Will exploit new antenna voltage feedback to reduce RF power trips in H-mode
- Consider antenna modification \Rightarrow directed spectra at 14m⁻¹ for improved CD (FY-08) - High power operation capable of heating T_e ~ 50eV plasma with 28m⁻¹


NSTX accesses ITER-relevant fast-ion phase-space island overlap regime with full diagnostic coverage

- ITER will operate in new, small ρ^* regime for fast ion transport
 - $k_{\perp} \rho \approx 1$ means "short" wavelength Alfvén modes
 - Fast ion transport expected from interaction of many modes
 - NSTX can study multi-mode regime while measuring MSE q profile

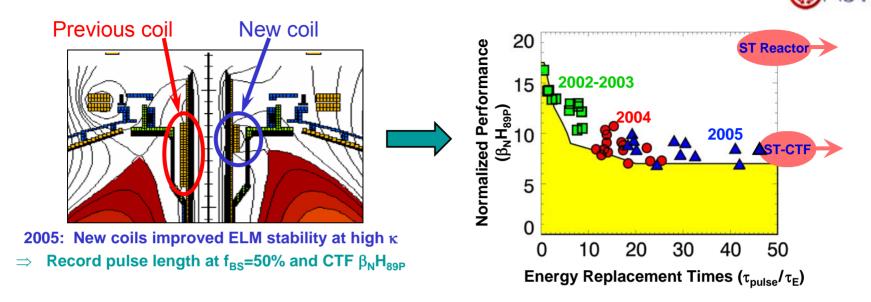
• High $\beta_{fast}(0) / \beta_{tot}(0)$ in NSTX provides drive for multiple modes in larger ρ^* regime

 NSTX observes that multi-mode TAE bursts induce larger fast-ion losses than single-mode bursts:


Research Plans for Energetic Particle Physics

- Determine scaling of mode structure and stability + fast ion losses (FY06)
 - Determine TAE avalanche threshold vs. q profile, v_{fast} / v_{Alfven} , etc. (MDC-9)
- Validate/test bootstrap/beam-driven current models (TRANSP) (FY-06)
 - Impact of fast-ion MHD on NBICD important issue for ITER and CTF (SSO-2.2)
 - Develop discharges free of fast-ion MHD activity
 - Compare to J(r) evolution in plasmas with and w/o energetic particle MHD
- Comprehensive diagnosis of mode structure and fast-ion diffusion (MDC-9)
 - MSE measurement of current profile (FY-06)
 - Fast ion loss measurements (FY-06)
 - Fast lost ion probe, solid state NPA, scanning NPA
 - Compare to ORBIT simulations of fast ion losses
 - Measurement of internal mode amplitude/structure (FY-07)
 - FIReTIP, reflectometer, B-field polarization from Mirnovs
 - Improved radial profile measurement of fast-ion redistribution (FY-08)
 - Fast Ion Dalpha (FIDA) diagnostic

STX


- Macroscopic Stability
- Transport and Turbulence
- Boundary Physics
- Waves and Energetic Particles
- Solenoid-free Start-up, Ramp-up, and Sustainment

Results & plans for solenoid-free start-up and ramp-up

- 2005: Plasma current amplified many times relative to injector current: $60 \times \rightarrow \infty$
 - Achieved > 60kA of closed flux current
 - Camera clearly indicates detachment
- CHI plasma start-up research plans: (FY06)
 - Increase V_{CHI} to 2 kV for higher I_{P}
 - Investigate B_T scaling (higher B_T favorable?)
 - Diagnose with fast camera, soft x-ray array, Thomson scattering, spectroscopy, bolometer
 - Study reconnection physics (dynamo probe)
- Develop hand-off to induction/HHFW (FY06-07)
 - Couple transient CHI to OH ramp-up
 - Study HHFW power coupling
 - Heat CHI plasma with HHFW \rightarrow BS overdrive
- Minimize OH flux consumption during I_P ramp to mimic small iron core in CTF (FY06-07)
 - Improve breakdown null, propagate early Hmode to all scenarios, earlier heating
- PF-only start-up development plans: (FY07-08)
 - Assess higher power pre-ionization sources
 - High $k_{\!\!\!\mu}$ HHFW, EBW, Plasma Gun (PEGASUS), and CT-Injection

Results & plans for current sustainment research

PLANS:

Investigate long-pulse operation with density control from Lithium (FY06)

- Investigate effect of low density on error fields/locked modes, H-mode access, ELMs

- Improved HHFW-sustained plasmas with improved voltage feedback (FY06)
- Complete studies of MHD effects on q-profile/hybrid scenarios (FY06-07) (sso-2.1,2.2)
- Investigate current drive physics in CTF conditions (FY07-08)
 - Lower density plasmas with higher NBICD fraction and high total non-inductive fraction
 - Demonstrate high f_{BS} at high κ = 2.8 with rtEFIT control (control computer upgrade)

NSTX will continue to contribute to fundamental toroidal confinement science in support of ITER and future ST's

DNSTX

- Achieved record NSTX pulse-length discharges in a favorable ELM regime obtained with strong shaping and enhanced shape control
 - Improving understanding of role of plasma geometry on stability (edge & core)
- Demonstrated particle control with Lithium coating
 - Only major US facility investigating Li for pumping and power handling
- Dramatically improved physics understanding of error fields, resistive wall modes, plasma rotation damping, and disruptions
 - With DIII-D, will validate RWM control methods for ITER
- Correlated improved electron confinement with measured reversed q-shear
 - Understanding electron transport highly relevant to burning plasmas
- Correlated significant fast particle loss with multi-mode "sea-of-TAE" bursts
 - Mode-induced fast ion loss important to burning plasmas
- Improved understanding of EBW and HHFW coupling efficiency
 - Developing current drive tools essential for ST, useful for AT
- Demonstrated 60kA closed-flux plasma formation in NSTX using CHI
 - Plasma start-up and ramp-up research crucial to ST concept

Developing knowledge for extrapolating ST to CTF and reactor