

Supported by

NSTX Research Results and Plans for FY2010-12

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J.E. Menard, PPPL

NSTX Program Director For the NSTX Research Team

FY2012 OFES Budget Planning Meeting Gaithersburg, MD March 11-12, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

- NSTX Mission
- Linkages to ReNeW
- FY2010-12 Research Milestones, ITER support
- Milestone Timelines
- NSTX Upgrade Motivation
- Summary

NSTX Mission Elements

Understand unique ST physics properties

– Low A, high β , v_{fast}/v_A , edge power density

Extend understanding of tokamak / ITER

•Establish attractive ST operating regimes

– Address gaps between ITER and DEMO

- Advance ST as fusion power source

Plasma Material

Interface (PMI)

Fusion Nuclear

Science (FNS)

1. ITER burning plasma

- Advancing multi-mode *AE fast-ion transport physics, diagnostics, modeling
- Developing ELM suppression and triggering understanding (lithium, 3D fields)

2. Creating and predicting high-performance/steady-state

- NSTX and Upgrade targeting 100% non-inductive, high- β_T (10-20%)
- Providing ST data to challenge wide range of theory and simulations

3. Taming the Plasma-Material Interface (PMI)

- NSTX is world leader in understanding Li PFCs + high-performance plasmas
- Also advancing radiative divertors, high flux expansion for heat flux mitigation

4. Harnessing fusion power

- ST attractive for fusion nuclear science (high neutron flux at small size, cost)

5. Configuration optimization

- ST attractive for next-steps (simplified, maintainable, affordable magnets)
- NSTX is lead US ST facility covering extensive range of ST research

NSTX research goals and milestones strongly support research actions identified in ReNeW ST Thrust 16:

ReNeW Thrust 16: "Develop the ST to advance fusion nuclear science" consists of 7 Thrust Elements:

- 1. Develop MA-level plasma current formation and ramp-up
- 2. Advance innovative magnetic geometries, first wall solutions
- 3. Understand **ST confinement and stability** at fusion-relevant parameters
- 4. Develop stability control techniques for long-pulse, disruption-free ops
- 5. Sustain current, control profiles with beams, waves, pumping, fueling
- 6. Develop normally-conducting radiation-tolerant magnets for ST applications
- 7. Extend ST performance to near-burning-plasma conditions

Thrust 16 elements provide outline for subsequent FY10-12 milestones

Initiating, ramping-up, and sustaining plasma current without reliance on central solenoid critical for nuclear applications of ST

- 1. Co-Axial Helicity Injection (CHI) forms closed-flux ST plasma
- **2.** High-Harmonic Fast Wave heats low I_P plasma \rightarrow bootstrap ramp-up
- 3. Neutral Beam Injection (NBI) heating & CD for ramp-up to flat-top current

Start-up goals: Non-inductively form 0.4MA plasma as target for NBI ramp-up to ~1MA in Upgrade in prep for FNSF

Upgraded HHFW has heated 100-200eV plasma to > 5keV in H-mode, maintained power during LH transition, ELMs

FY10: Characterize HHFW heating, current drive, ramp-up in D H-mode
 Attempt to sustain 100% non-inductive plasma (I_P = 250-400kA bootstrap CD)
 Develop bootstrap over-drive ramp-up, also heat electrons in NBI H-modes

•FY12: Assess confinement, heating, ramp-up of CHI start-up plasmas
 – Use HHFW to compare confinement, heating of CHI → OH plasmas vs. OH-only
 – Apply HHFW heating progressively earlier in shot to reduce OH flux swing to 0

NSTX lithium research is an integral part of a program to develop lithium as a PFC concept for magnetic fusion

LTX PFC test facility

Purdue surface analysis facilities

 <u>NSTX:</u>
 Only diverted, H-mode, NBI-heated tokamak w/ Li

 New capability: Liquid lithium divertor (LLD) – (collaboration with SNL)

- LTX operations commence 2010
- Fully non-recycling liquid lithium PFC's
- Profile control with core fueling
- No-carbon comparison to NSTX

NSTX upgrade, Fusion next-steps

Understand surface physics and chemistry

Lithium goals: Assess Li divertor for pumping, impact on plasma scenarios, compatibility with high-flux expansion

FY2010: <u>Liquid Lithium Divertor</u> (LLD) for sustained D pumping

LLD = 4 heated plates with porous Mo surface Thin film of liquid Li on plate absorbs impinging D Li fueled/replenished from above w/ evaporators

- •FY11: Assess the relationship between lithiated surface conditions and edge and core plasma conditions
 - -Assess pumping, retention vs. Li coverage, LLD temperature, R_{strike}, flux expansion
 - Compare to local retention, surface composition (MAPP probe Purdue)
 - -Measure C, Li density, transport from edge to core with toroidal, poloidal CHERS

NSTX collaborator Jean Paul Allain (Purdue) awarded Early Career Award for: "Harnessing Nanotechnology for Fusion Plasma-Material Interface Research in an in-situ Particle-Surface Interaction Facility"

Boundary goals: Improve H-mode pedestal structure/control understanding including Li, improve divertor power handling

•FY10: Assess H-mode pedestal, ELM stability vs. v^* , Li conditioning

- Determine the relative roles of n_e , v^* vs. direct effects of Li from LiTER and LLD
- Assess L-to-H threshold, pedestal height/width/stability, down-stream conditions
- •FY11: Assess pedestal/SOL response to applied 3D fields
- •FY12: Characterize very high flux expansion divertor operation
 - Assess power handling, LLD pumping of "snowflake" and "x-divertor" divertors

(incremental)

Boundary research will support two OFES joint research milestones: divertor heat flux, H-mode pedestal structure

FY2010: "...improve understanding of the heat transport in the SOL plasma, strengthening the basis for projecting divertor conditions in ITER"

-Exploit range of SOL v^{*}, β , q_{\parallel} , divertor geometry spanned by 3 facilities -**NSTX:** Liquid lithium effects, high β , lower A

FY2011 Theory-Experiment Milestone: "Understand mechanisms responsible pedestal structure, develop a predictive capability"

Experiment:

- -Perform experiments to test physics models in pedestal on multiple devices
- -NSTX: Higher-res. pedestal structure data (MPTS upgrade ARRA), E_r
- -**NSTX:** Initial measurements of turbulence in pedestal region (BES, GPI)

Theory:

- -Focused analytic theory/computation effort, include large-scale simulations
- -Model key physics mechanisms in experiments, compare to observations

Transport goals: Exploit fluctuation diagnostics, modeling to understand turbulent transport in ST, project to next-steps

- •FY11: Measure fluctuations responsible for turbulent energy transport
 - New: measure low-k turbulent $\delta n/n$ with Beam Emission Spectroscopy (BES)
 - High-k portion will be measured with existing high-k μ -wave scattering diagnostic
 - Correlate turbulent k-spectrum w/ energy diffusivities inferred from power balance
- •FY12: Enhance turbulent transport understanding by comparing measured fluctuations to theory and simulation
 - Compare measurements to micro-instability codes: GYRO, GTS, GS2, GTC-NEO

Energetic particle goals: Develop prediction of fast-ion transport from AE avalanches in H-mode for ST and ITER

•FY11: Assess predictive capability of mode-induced fast-ion transport (*incremental*)

- -Measure $\xi_r(R,t)$ in H-mode with BES + enhanced-resolution reflectometry
- -Improve measurements of fast-ion f(v) using tangential Fast-Ion D_{α} (FIDA) diagnostic extends existing perpendicular FIDA
- -Extend validation of NOVA-K/ORBIT TAE avalanche transport simulations
- -Develop multi-AE + multi-mode + fast-ion transport predictions w/ M3D-K

MHD goals: Understand kinetic effects for RWM and rotation damping to optimize RWM and rotation control for ST, ITER

NTV rotation damping also a sensitive function of resonances: Stronger damping in super-banana plateau regime as $\omega_E \rightarrow 0$?

Rotation decreases non-monotonically at fixed n=3 & β_N w/o mode activity

- •FY10: Assess sustainable β , disruptivity near/above ideal no-wall limit
 - β_N control, improved RFA/RWM detection, state-space controller, multi-mode effects
 - Characterize degree to which other instabilities (2/1 NTM) impact disruptivity
- •FY11: Assess RWM, NTV at reduced collisionality v^* (incremental)
- •FY12: Investigate physics and control of toroidal rotation at low v^*
 - Develop NTV physics understanding vs. n=1, 2, 3, v^* , β (RFA), rotation
 - -MISK calculations of rotation profiles for optimized global and edge stability

Advanced Scenario goals: Assess LLD and HHFW impact on advanced scenarios, integrate with ELM and rotation control

Higher NBI-CD → higher $η_{CD}$ → higher T_e / n_e Higher BS-CD → higher p_e thru higher T_e

Pulsed 3D fields used to trigger ELMs to control impurity content, density in Li ELM-free plasmas

New for FY11: Independent control of n=1,2,3 fields to optimize ELM pacing

- •FY11: Assess dependence of integrated plasma performance on v^*
 - Use LLD to reduce the density and increase $\tau_{\text{E}},$ HHFW to heat electrons
 - Assess non-inductive current, confinement, core and pedestal stability, impurities
- •FY12: Investigate physics and control of toroidal rotation at low v^*
 - Explore role of rotation profile on transport, bootstrap current, ELMs, impurities
 - Control profile w/ independent control of n=1,2,3 NTV utilize new 2nd SPA (ARRA)

NSTX is actively engaged in 21 ITPA joint experiments

Advanced Scenarios and Control

- IOS-5.2 Maintaining ICRH Coupling in expected ITER Regime

Boundary Physics and Lithium Research

- PEP-6 Pedestal structure and ELM stability in double null
- PEP-19 Edge transport under the influence of resonant magnetic perturbations
- PEP-23 Quantification of the requirements for ELM suppression by magnetic perturbations from internal off mid-plane coils
- PEP-25 Inter-machine comparison of ELM control using mid-plane RMP coils
- PEP-26 Critical edge parameters for achieving L-H transition
- PEP-27 Pedestal profile evolution following L-H transition
- DSOL-21 Introduction of pre-characterized dust for dust transport studies in divertor and SOL

• Macroscopic Stability

- MDC-2 Joint experiments on resistive wall mode physics
- MDC-4 Neoclassical tearing mode physics aspect ratio comparison
- MDC-12 Non-resonant magnetic braking
- MDC-14 Rotation effects on neoclassical tearing modes
- MDC-15 Disruption database development
- MDC-17 Physics-based disruption avoidance

• Transport and Turbulence

- TC-4 H-mode transition and confinement dependence on ionic species
- TC-9 Scaling of intrinsic plasma rotation with no external momentum input
- TC-10 Experimental identification of ITG, TEM and ETG turbulence and comparison with codes
- TC-12 H-mode transport and confinement at low aspect ratio
- TC-14 RF Rotation Drive

Waves-Particle Interactions

- EP-2 Fast ion losses and redistribution from localized Alfvén Eigenmodes
- EP-4 Effect of dynamical friction (drag) at resonance on nonlinear AE evolution

In FY2010-12, NSTX will support confinement, pedestal, and ELM research identified as high priority by the ITER Organization

NSTX will dedicate 5 run-days in FY2010 specifically to ITER high-priority:

From ITER Physics Work Programme 2009-2011 - Sections 2.1 - ITER Short term activities (2008-2010) and 2.2 - ITER Medium term activities (2011 and beyond)

- 2.1.1 Transport and Confinement during transient phases
- 2.1.2 Access to high confinement regimes in ITER during steady/state and ramp-up/down H, D and DT phases
- 2.1.3 Characterization of proposed schemes for active ELM control, compatibility with scenario requirements
- Assess NSTX confinement, H-mode threshold, etc. during ramp-up/down
- Complete/extend NSTX L-H, H-L threshold experiments from FY2009 in FY2010-11
- Contribute NSTX understanding of RMP ELM pacing results
- 2.2.1 Pedestal width, pedestal energy and uncontrolled ELM energy loss in ITER
- 2.2.2 Development of alternative regimes providing high fusion performance in ITER without or with small ELMs compatible with overall scenario requirements

2.2.3 Develop alternative methods for ELM control/suppression in ITER & integration w/ scenario requirements 2.2.6 Momentum transport in ITER reference scenarios & expected plasma rotation in ITER

- Contribute to OFES 3 facility joint research milestone on pedestal structure in FY2011
- Attempt to extrapolate NSTX Type V ELMs to low v^* , explore access to QH mode
- Extend NSTX vertical jogs and RMP fields for ELM pacing to smaller ELM size
- Develop NSTX Li ELM-free H-mode with reduced/halted impurity accumulation
- Use NSTX HHFW to reduce input torque, use NB pulses + CHERS for T_i and rotation

Jong-Kyu Park (PPPL) awarded DOE-SC Early Career Award for: "Self-consistent Calculations of Pedestal Structure Modification by 3D Fields in Tokamaks"

FY2010-12 milestones exploit new liquid lithium divertor (LLD), upgraded fast-wave, and BES for boundary physics, transport, start-up, integration

FY2010	FY2011	FY2012
Expt. Run Weeks: 15 w/ ARRA	14	14
1) Transport & Turbulence	BES, LLD, HHFW	BES
	Measure fluctuations responsible for turbulent ion and electron energy transport	Compare measured turbulence fluctuations to theory & simulation
2) Macroscopic Stability LLI		
Assess sustainable beta and disruptivity near and above the ideal no-wall limit	LLD. BES	LLD
3) <u>Boundary/Lithium Physics</u> <u>LLI</u> Assess H-mode characteristics	Assess relationship between lithiated surface conditions and	Assess very high flux expansion divertor operation
as a function of collisionality and lithium conditioning	edge and core plasma conditions	
4) <u>Wave-Particle Interaction</u> HHFV Characterize HHFW heating CD and		
(joint with solenoid-free start-up TSG)		
5) Solenoid-free start-up, ramp-up		LLD, HHFW
		ramp-up of CHI start-up plasmas (joint with WPI-HHFW TSG)
6) Advanced Scenarios & Control	LLD, HHFW	Investigate physics and LLD
	Assess integrated plasma performance versus collisionality	control of toroidal rotation at low collisionality (joint with MS TSG)
Joint Research Targets (3 US facilities):		
Understanding of divertor LLD, HHFV heat flux, transport in scrape-off layer	Characterize H-mode LLD pedestal structure	Not yet decided
() NSTX	OFES BPM 2012 – NSTX Program (Menard)	March 11, 2010 1

Enhanced utilization in FY2011-12 would accelerate understanding of transport response to 3D fields, RWM stability, fast-ion confinement

FY2010	FY2011	FY2012
Expt. Run Weeks: 15 w/ ARRA	20	20
1) <u>Transport & Turbulence</u>	Measure fluctuations responsible for turbulent ion and electron energy transport	Compare measured turbulence fluctuations to theory & simulation
2) <u>Macroscopic Stability</u> Assess sustainable beta and disruptivity near and above the ideal no-wall limit	Assess RWM, rotation damping physics at reduced collisionality	
3) <u>Boundary/Lithium Physics</u> Assess H-mode characteristics as a function of collisionality and lithium conditioning	Assess relationship between lithiated surface conditions and edge and core plasma conditions Assess pedestal & SOL response	Assess very high flux expansion divertor operation
4) <u>Wave-Particle Interaction</u> Characterize HHFW heating, CD, and ramp-up in deuterium H-mode (joint with solenoid-free start-up TSG)	to externally applied 3D fields	Assess predictive capability of mode-induced fast-ion transport
5) <u>Solenoid-free start-up, ramp-up</u>		Assess confinement, heating, and ramp-up of CHI start-up plasmas (joint with WPI-HHFW TSG)
6) <u>Advanced Scenarios & Control</u>	Assess integrated plasma performance versus collisionality	Investigate physics and control of toroidal rotation at low collisionality (joint with MS TSG)
Joint Research Targets (3 US facilities):		
Understanding of divertor beat flux, transport in scrape-off layer	Characterize H-mode	Not yet decided

Reduced utilization (-10% case) in FY2011-12 would significantly delay progress on scenario integration, plasma start-up, and profile control

	FY2010	FY2011	FY2012
Expt. F	Run Weeks: 15 w/ ARRA	9	9
1) <u>Tra</u>	insport & Turbulence	Measure fluctuations responsible for turbulent ion and electron energy transport	Compare measured turbulence fluctuations to theory & simulation
2) <u>Ma</u> As dis no	croscopic Stability sess sustainable beta and sruptivity near and above the ideal -wall limit		
3) <u>Bo</u> As as lith	undary/Lithium Physics sess H-mode characteristics a function of collisionality and nium conditioning	Assess relationship between lithiated surface conditions and edge and core plasma conditions	Assess very high flux expansion divertor operation
4) <u>Wa</u> Ch rar (join	we-Particle Interaction aracterize HHFW heating, CD, and mp-up in deuterium H-mode nt with solenoid-free start-up TSG)		
5) <u>Sol</u>	lenoid-free start-up, ramp-up		Assess confinement, heating, and ramp-up of CHI start-up plasmas (joint with WPI-HHFW TSG)
6) <u>Ad</u>	vanced Scenarios & Control	Assess integrated plasma performance versus collisionality	Investigate physics and control of toroidal rotation at low collisionality (joint with MS TSG)
Joint	Research Targets (3 US facilities)	:	
Un he	derstanding of divertor at flux, transport in scrape-off layer	Characterize H-mode pedestal structure	Not yet decided
TO NOT	Y	OFES BPM 2012 – NSTX Program (Menard)	March 11, 2010

Access to reduced collisionality is needed to understand underlying causes of ST transport, scaling to next-steps

- Higher toroidal field & plasma current enable access to higher temperature
- Higher temperature reduces collisionality, but increases equilibration time
- Upgrade: Double field and current for 3-6× decrease in collisionality → require 3-5× increase in pulse duration for profile equilibration

Increased auxiliary heating and current drive are needed to address ST start-up, sustainment, and boundary issues

- Need additional heating power to access high temperature and β at low v*
 → 4-10MW more heating, depending on confinement scaling
- Need increased <u>current drive</u> to access and study 100% non-inductive → 0.25-0.5MA more current drive compatible with ramp-up, sustainment plasmas
- Need to learn to manage \geq ITER \rightarrow FNSF-level high-heat-flux challenge
 - \rightarrow high divertor power density (P/R \leq 20MW/m) + flexible divertor PF coil set
- Upgrade: Double neutral beam power + more tangential injection
 - -More tangential injection \rightarrow up to 2 times higher efficiency, current profile control

OFES BPM 2012 – NSTX Program (Menard)

NSTX Upgrade will enable access to normalized divertor and first-wall heat-loads much closer to FNS and Demo regimes

Combinations of advanced PMI solutions will be assessed in NSTX and NSTX Upgrade in support of next-steps, Demo

 High divertor heat flux can be reduced in NSTX with partially detached divertor (PDD)

 NSTX has demonstrated the formation of high flux-expansion "snowflake" divertor

- The PDD operating regime + other PMI solutions will be challenged in NSTX-U:
 - 2-3× higher input power
 - 30-50% reduction in n / n_{Greenwald}
 - $-3-5\times$ longer pulse duration, leading to substantial increase in T_{divertor}
- NSTX and NSTX-U will test the compatibility of high flux expansion, PDD, and a liquid lithium divertor (LLD)

NSTX LLD

Additional coil added to control flux expansion and R_{strike}

Vlad Soukhanovskii (LLNL) received DOE-SC Early Career Award for proposal to study "Advanced High Heat Flux Divertor Program on the NSTX"

Summary

- NSTX FY2010-12 research plan contributes strongly to ST and ITER, and to all OFES ReNeW themes and most thrusts
- Plan and upgrades enable exciting new understanding and ST performance across all topical science areas:
 - CHI start-up and HHFW BS-overdrive non-inductive ramp-up
 - Lithium effects on transport, stability, boundary and divertor physics
 - Advanced power and particle exhaust solutions for ST, FNSF, Demo
 - Micro-instabilities causing anomalous energy transport
 - Fast-ion transport from multi-mode AE for ST, ITER
 - RWM critical rotation, torques from 3D fields, dependence on lower $\nu_{\rm i}$
 - Push to 100% non-inductive ops with increased bootstrap and NBI-CD