

Supported by

NSTX-U Research Plans for FY2013-15

Coll of Wm & Mary Columbia U **CompX General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics Old Dominion** ORNL PPPL **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

J. Menard, M. Ono - PPPL

For the NSTX-U Research Team

FY2015 FES Budget Planning Meeting Germantown, MD April 10, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U **NFRI** KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Outline

- NSTX-U mission, priorities, FY13-15 overview
- FY13-15 research plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

NSTX Upgrade mission elements

 Advance ST as candidate for Fusion Nuclear Science Facility (FNSF)

• Develop solutions for the plasmamaterial interface challenge

- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
- Develop ST as fusion energy system

FY13-15 planned research supports 5 highest priority goals for NSTX-U 5 year plan:

- 1. Demonstrate stationary 100% non-inductive at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q & rotation to dramatically extend ST plasma understanding
- 3. Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation with small or no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solution for SS-PMI, FNSF, beyond

Overview of FY2013 NSTX-U research activities

- Finalizing NSTX-U 5 year plan for FY2014-2018
 - Plan to be submitted this month, reviewed next month
 - First 2-3 years: prepare for operation, explore new regimes
 - High β + lower v^{*}, higher non-inductive w/ higher B_T, I_P, 2nd NBI
 - Proposed long-term upgrades under consideration:
 - Base: divertor cryo, ECH/EBW for start-up, off-midplane 3D coils
 - Incremental: convert PFCs to high-Z, implement divertor Thomson
- Collaborations supporting NSTX-U, ITER, FNSF
 - DIII-D: Snowflake & NTM control, pedestal transport, operations
 - MAST: AE* physics, micro-tearing/turbulence, EBW start-up
 - EAST: Lithium and high-Z PFCs, long-pulse control, ICRF
 - C-Mod: Pedestal structure/turbulence, high-Z PFC studies
 - KSTAR: NTV physics, MHD equil/stability, plasma control
 - LHD: 3D equilibrium, transport (J-K Park visiting professor)

Overview of FY2014-15 NSTX-U research activities

- FY2014
 - Transition off-site collaboration/researchers back to NSTX-U
 - Finish data analysis, publications from NSTX, collaborations
 - Prepare diagnostics, control system, analysis for NSTX-U ops
 - Complete CD-4 for NSTX Upgrade Project
- FY2015
 - Initiate operation, carry out research program for NSTX-U
 - Obtain first data at higher field, current, longer pulse:
 - Re-establish sustained low I_i / high- κ operation above no-wall limit
 - Study thermal confinement, pedestal structure, SOL widths
 - Assess current-drive and fast-ion instabilities from new 2nd NBI
 - Push toward full non-inductive operation, high current operation

FY2013-15 planned research supports 5 highest priority goals for NSTX-U 5 year plan:

- 1. Demonstrate stationary 100% non-inductive at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q & rotation to dramatically extend ST plasma understanding
- 3. Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation with small or no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solution for SS-PMI, FNSF, beyond

NSTX has already accessed A, β_N , κ needed for ST-based FNSF – next step is to access & control 100% non-inductive

NSTX-U TRANSP predictions: $B_T=1.0$ T, $I_P=1$ MA, $P_{ini}=12.6$ MW

NSTX-U is developing a range of profile control actuators for detailed physics studies, scenario optimization for FNSF

q-Profile Actuators

(D) NSTX-U

Advanced Scenarios and Control Research Plans for FY2013-15: Develop advanced control algorithms, explore new NSTX-U scenarios

- JRT-2013: "Evaluate stationary enhanced confinement regimes without large Edge Localized Modes (ELMs), and to improve understanding of the underlying physical mechanisms that allow increased edge particle transport while maintaining a strong thermal transport barrier" (Led by S. Gerhardt)
- FY13-14: Develop and implement advanced control algorithms in preparation for NSTX-U operation R14-3
 - Snowflake control on DIII-D (PPPL+LLNL+GA)
 - J profile control using on/off-axis 2nd NBI (PPPL + Lehigh)
 - Implement rt-MSE (Nova Photonics) in rt-EFIT for q-profile reconstruction
 - Rotation control: 2nd NBI deposition flexibility + 3D fields/NTV
- FY14-15: Re-establish NSTX-U control and plasma scenarios
- FY15: Assess new 2nd NBI current-drive vs. R_{TAN}, n_e, outer gap
 Push toward 100% non-inductive operation at higher B_T, P_{NBI} R¹⁵⁻³
- FY15: Explore scenarios (τ_E , I_i, MHD) at up to 60% higher I_P, B_T

NSTX is making leading contributions to high- β_N & disruption warning research, assessing possible 3D coil upgrades

- n=1 MHD spectroscopy: high β_N can be more
 stable → important for advanced scenarios
- Developing disruption warning algorithms
 - Based on sensors + physics-based variables
 - < 4% missed, 3% false positives</p>
 - ITER requires 95-98% prediction success
 - Will assess applicability/extension to ITER through ITPA Joint Activity, and for ST-FNSF
 - Identified several off-midplane 3D coil sets favorable for profile, mode control

Macroscopic Stability Research Plans for FY2013-15:

Advance disruption warning and 3D coil design, re-establish high- β ops

- FY13-14: Complete compilation of NSTX disruption database and precursor ID for disruption characterization and prediction

 Prepare real-time disruption warning algorithms for NSTX-U
 R13-4
- FY13-14: Complete physics design of new Non-axisymmetric Control Coils (NCC) for RWM, TM, RMP, EFC, NTV/ v_{ϕ} control
- FY14: Understand/model low-density/ramp-up disruptions in NSTX in preparation for low v* operation in NSTX-U scenarios
 Leverage DIII-D, KSTAR, MAST collaborations R14-1
- FY15: Re-establish n=1-3 error-field correction, RWM control, minimize rotation damping, sustain operation above no-wall stability limit
- FY15: Test poloidal dependence of Massive Gas Injection (outboard vs. private flux region)

- Longer-term goal: trigger mitigation via real-time warning

FY2013-15 planned research supports 5 highest priority goals for NSTX-U 5 year plan:

- 1. Demonstrate stationary 100% non-inductive at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q & rotation to dramatically extend ST plasma understanding
- 3. Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation with small or no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solution for SS-PMI, FNSF, beyond

Beginning to test/utilize transport models to predict NSTX temperature profiles, identify possible missing physics

- NSTX H-modes showed broadening of T_e profile as B_T was increased
 - Similar broadening trend observed with increased lithium deposition
 - $B_T \tau_E$ scales as ~1/v* in both datasets
- Utilizing neoclassical + drift wave models to simulate NSTX T_i and T_e profiles (collaboration with GA)
 - Need model for pedestal χ
 - Discrepancy in core T_e prediction for beam-heated H-modes

 Over-prediction of core T_e in NSTX may be due to transport from GAE/CAE modes not included in gyro-Landau-fluid model Transport and Turbulence Research Plans for FY2013-15:

Complete turbulence diagnostic design, obtain first τ_E data at higher B_T , I_P

- FY13: Complete integrated physics and optical design of the new high-k FIR scattering system for ETG turbulence R13-1
 - Measure $k_r \& k_{\theta}$ to study turbulence anisotropy

- FY13-14: Investigate micro-tearing on MAST by varying relevant parameters (β , ν , Z_{eff}) and using BES diagnostics
- FY13-15: Develop model $\chi_{e, AE}$ using measured CAE/GAE mode structures and ORBIT simulations (w/ EP group)
- FY14-15: Develop and validate reduced transport models using ST data + linear and non-linear gyro-kinetic simulations
- FY15: Extend ST confinement scalings and understanding with up to 60% increase in B_T and I_P (higher in later years) R15-1

- Measure low-k δn (BES w/ increased edge channel count), 1st polarimetry data

Developing improved energetic particle simulation tools and understanding utilizing NSTX data for NSTX-U, ITER, FNSF

- Expect mode-number up-shift at higher B

 B will be up to 2x higher in NSTX-U vs. NSTX
 Broad spectrum possible from large v_{fast} / v_{Alfvén}
- Plasma rotation & associated Doppler shift can significantly alter radial gap width
 - NSTX-U rotation expected to be 2-4x higher
 - Consistent treatment of rotation crucial for correct computation of both drive and damping
 - Implementing rotation effects in NOVA-K
- Many competing influences on AE stability:
 - Destabilizing effects: higher $\beta_{\text{fast}},$ more tangential injection and resonance with passing ions
 - Stabilizing: Large $R_{TAN} \rightarrow$ broader fast-ion density
 - 3D fields: direct transport, also thru rotation profile

 $k_{\perp}\rho_f \sim 1 \Rightarrow \frac{nq}{a} \frac{v_f}{\omega_{cf}} \sim 1$ $\Rightarrow n \sim B \Rightarrow n = 2 - 10$

16

Energetic Particle Physics Research Plans for FY2013-15: Develop full + reduced models of fast-ion x-port, characterize new 2nd NBI

- FY13: Collaborate with MAST and DIII-D on AE experiments to provide data for reduced fast-ion transport models
- FY13-14: Develop reduced model for AE-induced fast ion losses needed for NBICD in STs/ATs/ITER
- FY13-14: Contribute to development of reduced model of electron thermal transport from CAE/GAE
- FY14: Finalize design/implementation of prototype AE antenna and of upgraded ssNPA diagnostic
- FY15: Measure fast-ion (FI) density profiles, confinement, current drive, AE stability with new 2nd NBI R15-2

FY2013-15 planned research supports 5 highest priority goals for NSTX-U 5 year plan:

- 1. Demonstrate stationary 100% non-inductive at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q & rotation to dramatically extend ST plasma understanding
- 3. Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation with small or no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solution for SS-PMI, FNSF, beyond

Plasma initiation with small or no transformer is unique challenge for ST-based Fusion Nuclear Science Facility

NSTX-U Non-Inductive Strategy:

• NSTX-U 5 year plan goal:

- Generate ~0.4MA closed-flux start-up current with helicity injection
- Heat CHI with ECH and/or fast wave, ramp 0.4MA to 0.8-1MA with NBI

Simulations support non-inductive start-up/ramp-up strategy

 TSC code successfully simulates CHI I_P ~200kA achieved in NSTX

- TSC + tools included in 5 year plan support CHI I_P → 400kA in NSTX-U
 - 2.5 x higher injector flux (scales with I_P)
 - Higher $B_T = 1T$ (increases current multiplication)
 - > 2kV CHI voltage (increases flux injection)
 - 1MW 28GHz ECH (increases T_e)

- TRANSP: NSTX-U more tangential NBI → 3-4x higher CD at low I_P (0.4MA)
 - 1.5-2x higher CD efficiency, 2x higher absorption
- TSC: non-inductive ramp-up from 0.4MA to 1MA possible w/ BS + NBI

 But, RF heating (ECH and/or HHFW) of CHI likely required to couple to NBI

Solenoid-Free Start-up and Ramp-up Research Plans for FY2013-15: Simulate CHI start-up/ramp-up, prepare CHI for NSTX-U

- FY13: Model CHI start-up → ECH+HHFW+NBI rampup scenarios using the NSTX-U vessel + coil geometry
 - Extend TSC simulations to include time-evolving TRANSP NBI current-drive and coupling/ramp-up of low- I_P plasmas
- FY13-14: Complete design of upgraded capacitor bank and diagnostics for NSTX-U, implement CHI gap tiles
- FY13-14: Finish CHI design study for QUEST, possibly implement CHI
- FY15: Establish NSTX-U CHI, assess impact of new injector, gap, higher B_T

NSTX

FY15: First tests of NBI ramp-up using new 2nd NBI BI ramp-up using new 2nd NBI

Developing and validating advanced fast-wave simulations supporting NSTX-U non-inductive start-up and ITER ICRF

- AORSA simulations for NSTX-U:
 - Edge power losses often observed in NSTX
 - SOL profiles and antenna model can strongly [influence edge wave-fields & power deposition
 - 40-50% of FW power predicted to be absorbed by thermal & fast ions for antenna using heating phasing ($k_{\phi} = 13 \text{ m}^{-1}$)
- CQL3D Fokker-Planck simulations:
 - Full-orbit "Hybrid" finite orbit width version of code now shows good agreement with NSTX fast ion diagnostic (FIDA) data
 - Future: simulate and interpret NSTX-U data
- At full field, NSTX-U will operate in an ion-cyclotron-harmonic regime similar to ITER ½-field pre-activation phase

AORSA Re(E_{||}) simulations for 30 MHz FW $n_{+} = 12$ heating in **NSTX-U** w/ B_T(0) = 1T

Wave Physics Research Plans for FY2013-15:

Prepare ECH/EBW design, simulate & develop reliable FW H-mode

- FY13: Extend HHFW coupling / heating calculations to higher I_P , B_T NSTX-U equilibria emphasis on fast-ion interactions
- FY13: Collaborate with MAST on EBW start-up
- FY13-14: Complete physics design of 1MW/28GHz ECH/EBW system for NSTX-U. Design goals: R13-3
 - ECH to heat CHI plasma to form target I for HHFW/NBI+BS I_P ramp-up
 - EBW H&CD for start-up, sustainment

- FY14: Collaborate on EAST to develop/guide reliable ICRFheated H-mode scenarios for NSTX-U, ITER
- FY15: Assess, optimize HHFW coupling and heating at higher B_T and I_P and support low- I_P heating for non-inductive ramp-up

FY2013-15 planned research supports 5 highest priority goals for NSTX-U 5 year plan:

- 1. Demonstrate stationary 100% non-inductive at performance that extrapolates to \geq 1MW/m² neutron wall loading in FNSF
- 2. Access reduced v^* and high- β combined with ability to vary q & rotation to dramatically extend ST plasma understanding
- 3. Develop and understand non-inductive start-up/ramp-up to project to ST-FNSF operation with small or no solenoid
- 4. Develop and utilize high-flux-expansion "snowflake" divertor and radiative detachment for mitigating very high heat fluxes
- 5. Begin to assess high-Z PFCs + liquid lithium to develop highduty-factor integrated PMI solution for SS-PMI, FNSF, beyond

Snowflake divertor results + simulations project to favorable particle and power exhaust control in NSTX-U, next-steps

 Snowflake on DIII-D (GA+LLNL+PPPL collaboration) extended 2-3x reduction in q_{peak} to 3s duration

- NSTX-U divertor cryo projections: $f_G \le 0.5$ for wide range of $I_P (\lambda_{SOL})$
 - Standard/snowflake: 0.6/0.7 to 1.5/2MA
 - Maintain $q_{peak} \le 10$ MW/m²

 Multi-fluid edge transport model (UEDGE) predicts factor of ~5
 reduction in NSTX-U peak heat flux

- Geometry + impurity radiation (4% C)

Advance snowflake, cryo, pedestal, SOL studies, extend to higher B_T, I_P

- FY13: Complete modeling of synergy of snowflake with detachment in NSTX and NSTX-U, extend to FNSF
- FY13-14: Complete NSTX-U cryo-pump physics design, integrate w/ detached snowflake
- FY13-14: Continue/complete collaborations on pedestal and SOL transport (DIII-D, C-Mod) to improve edge predictive capability
 - NSTX: Measured ion-scale correlation lengths at pedestal top consistent with XGC1 predictions
 - Low-k turbulence consistent with ITG and/or KBM
 - XGC0 and 1 also being utilized to understand L→H threshold, QH-mode edge transport in DIII-D
- FY15: Measure pedestal structure, SOL width, ELM types, snowflake performance at up to 60% higher current, field, 2× higher P_{NBI} R¹⁵⁻¹ R¹⁵⁻¹

Lithium Granule Injector (LGI) is promising tool for pedestal/ELM control and scenario optimization

5777.238

5896.421

6015.603

- Successful EAST collaboration
 - Demonstrated LGI ELM-pacing at 25 Hz with nearly 100% triggering reliability
 - Capable of up to 1 kHz injection
- LGI will be tested on NSTX-U for high-frequency ELM pacing
 - Possible density control technique:
 - Combine Li coatings for D pumping with LGI for ELM-expulsion of carbon
 - Goal: reduce Z_{eff} to ~2-2.5
 - Injection of Li granules could also potentially replenish PFC Li coatings
- JET/ITER: potentially interested in testing Be granules for ELM pacing

dB₀/dt (V)

XUV (kW/m²) 0.03

0.54 0.16 -0.02

74.13 36.66 -0.82

5658.056

Time (ms)

<u>Materials and Plasma Facing Components Plans for FY2013-15:</u> Advance Li understanding/technology, support NSTX-U wall conditioning

- FY13: Study Li-conditioned surface composition and plasma behavior using Materials Analysis and Particle Probe (MAPP – Purdue collaboration) on LTX in-prep for NSTX-U R13-2
- FY13-14: Develop Li-coating tools for upper PFCs of NSTX-U to increase Li coverage of C, D pumping, thermal confinement
- FY13-15: Lab-based R&D for advanced Li PFCs
 - Study Li on metal substrates, response to plasma power and particle fluxes (MAGNUM-PSI)
 - High-heat-flux high-Z PFC design (TZM or W lamellae)
 - Flowing Li loop tests
 - Develop capillary-restrained gas-cooled Li PFC
- FY14: EAST collaboration: assess particle/impurity control w/ triggered ELMs, cryo-pumping, lithiumization, high-Z PFCs
- FY15: Test LGI, Li coating dependence/evolution in NSTX-U

Fast-camera Image Li-I Emission

cident Plasma

Outline

- NSTX-U mission
- FY13-15 research overview and plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

Administration FY13 request-level funding would greatly limit run-time in FY15, and limit field and current near NSTX levels

	FY2013	FY2014	FY2015
Expt. Run Weeks:	0	0	0-6
Macroscopic Stability	P40.4	Assess access to reduced density and v^* in high-performance scenarios (with ASC, BP TSGs)	
Transport and Turbulence	Perform integrated physics+optical design of new high-k ₀ FIR system		R15-1 Assess H-mode τ_{E} , pedestal, SOL characteristics at higher B_{T} , I_{P} , P_{NBI}
Boundary Physics	R13-2		MG weld repair likely required to
Materials & PFCs	Assess relationship between lithium-conditioned surface composition and plasma behavior	R14-2	above NSTX levels
Waves+Energetic Particles	Perform physics design of ECH & EBW system for plasma start-up & current drive in advanced scenarios	Assess reduced models for *AE mode-induced fast-ion transport	Assess effects of NBI injection on fast-ion f(v) and NBI-CD profile (with SFSU, MS, ASC TSGs)
Solenoid-free Start-up/ramp-up		R14-3	
Adv. Scenarios and Control	R13-4	Assess advanced control techniques for sustained high performance (with MS, BP TSGs)	R15-3 Develop physics+operational tools for high-performance discharges
ITER Needs + Cross-cutting	Identify disruption precursors and disruption mitigation & avoidance techniques for NSTX-U and ITER		(with CC, ASC, MS, BP, M&P TSGs)
Joint Research Target	Stationary regimes w/o large ELMs, improve understanding of increased edge particle transport	Quantify plasma response to non- axisymmetric (3D) magnetic fields in tokamaks	TBD
DNSTX-U	FES BPM fo	r FY2015 FWP – NSTX-U Program	30

+15% above Administration FY13 request-level provides runtime and field + current to exploit new Upgrade capabilities

	FY2013	FY2014	FY2015
Expt. Run Weeks:	0	0	16
Macroscopic Stability		Assess access to reduced density and v^* in high-performance scenarios (with ASC, BP TSGs)	
Transport and Turbulence	Perform integrated physics+optical design of new high-k ₀ FIR system		R15-1 Assess H-mode τ _E , pedestal, SOL characteristics at higher B _J , I _P , P _{NBI}
Boundary Physics	R13-2		(with BP, M&P, ASC, WEP TSGs)
Materials & PFCs	Assess relationship between lithium-conditioned surface composition and plasma behavior	R14-2	R15-2
Waves+Energetic Particles	Perform physics design of ECH & EBW system for plasma start-up & current drive in advanced scenarios	Assess reduced models for *AE mode-induced fast-ion transport	Assess effects of NBI injection on fast-ion f(v) and NBI-CD profile (with SFSU, MS, ASC TSGs)
Solenoid-free Start-up/ramp-up	K13-3	R14-3	
Adv. Scenarios and Control	R13-4	Assess advanced control techniques for sustained high performance (with MS, BP TSGs)	R15-3 Develop physics+operational tools for high-performance discharges
ITER Needs + Cross-cutting	Identify disruption precursors and disruption mitigation & avoidance techniques for NSTX-U and ITER		(with CC, ASC, MS, BP, M&P TSGs)
Joint Research Target	Stationary regimes w/o large ELMs, improve understanding of increased edge particle transport	Quantify plasma response to non- axisymmetric (3D) magnetic fields in tokamaks	TBD
MSTX-U	EES BPM for	r FY2015 FWP - NSTX-U Program	31

Full operation case accelerates snowflake + start-up/ramp-up research for FNSF, fully utilizes facility during 1st year of ops

	FY2013	FY2014	FY2015
Expt. Run Weeks:	0	0	20
Macroscopic Stability	P42 4	Assess access to reduced density and v* in high-performance scenarios (with ASC, BP TSGs)	
Transport and Turbulence	Perform integrated physics+optical design of new high-k ₀ FIR system		R15-1 Assess H-mode τ _E , pedestal, SOL characteristics at higher B _T , I _P , P _{NBI} (with BP, M&P, ASC, WEPTSGs)
Boundary Physics	R13-2		Develop snowflake configuration, study edge and divertor properties (with ASC, TT, MP)
Materials & PFCs	Assess relationship between lithium-conditioned surface composition and plasma behavior	R14-2	IR15-1 R15-2
Waves+Energetic Particles	Perform physics design of ECH & EBW system for plasma start-up & current drive in advanced scenarios	Assess reduced models for *AE mode-induced fast-ion transport	Assess effects of NBI injection on fast-ion f(v) and NBI-CD profile (with SFSU, MS, ASC TSGs)
Solenoid-free Start-up/ramp-up	R13-3		Assess CHI & Iow-I _P FW heating at higher B _T , test NBI+BS I _P ramp-up (with WEP, ASC TSGs)
		R14-3 Assess advanced control	IR15-2
Adv. Scenarios and Control		techniques for sustained high performance (with MS, BP TSGs)	R15-3 Develop physics+operational tools for high-performance discharges
ITER Needs + Cross-cutting	Identify disruption precursors and disruption mitigation & avoidance techniques for NSTX-U and ITER		(with CC, ASC, MS, BP, M&P TSGs)
Joint Research Target	Stationary regimes w/o large ELMs, improve understanding of increased edge particle transport	Quantify plasma response to non- axisymmetric (3D) magnetic fields in tokamaks	TBD
MSTX-11	EES RDM fo	r EV2015 EWP - NSTX-II Program	32

Outline

- NSTX-U mission
- FY13-15 research overview and plans
- Milestone summary
- ITPA contributions
- ST-FNSF mission and configuration study
- Summary

NSTX-U team continuing to strongly support ITER through participation in ITPA joint experiments and activities

Pedestal/Edge Physics and DIVSOL					
DSOL-24	Disruption heat loads	PEP-27	Pedestal profile evolution following L-H/H-L transition		
PEP-6	Pedestal structure and ELM stability in DN	PEP-29	Vertical jolts/kicks for ELM triggering and control		
PEP-19	Basic mechanisms of edge transport with RMP	PEP-34	ELM energy losses and their dimensionless scaling		
Energetic Particles					
EP-2	Fast ion losses and redistribution from localized Aes	EP-6	Fast ion losses and associated heat loads from edge perturbations		
Integrated Operating Scenarios					
IOS-3.2	Define access conditions to get to SS sceanrio	IOS-4.3	Collisionality scaling of confinement in advanced inductive regime		
IOS-4.1	Access conditions for advanced inductive scenario	IOS-5.2	Maintaining ICRH coupling in expected ITER regime		
MHD					
MDC-2	Joint experiments on resistive wall mode physics	MDC-17	Active disruption avoidance		
MDC-8	Current drive prevention/stabilization of NTMs	MDC-18	Evaluation of axisymmetric control aspects		
MDC-15	Disruption database development				
Transport and Confinement					
TC-9	Scaling of intrinsic rotation with no external momentum input	TC-15	Dependence of momentum and particle pinch on collisionality		
TC-10	Exptl id of ITG, TEM and ETG turbulence and comparison with codes	TC-17	ρ^{\ast} scaling of the edge intrinsic torque		
TC-11	He and impurity profiles and transport coefficients	TC-24	Impact of RMP on transport and confinement		
TC-12	H-mode transport and confinement at low aspect ratio				

NSTX/ST researchers contributing to LDRD-funded study of Mission and Configuration of an ST-FNSF

- Overarching goal of study:
 Determine optimal mission, performance, size
- Goals of study:

Russia Culham UT Austin ORNL PPPL

- Review existing designs, ID advantageous features, improve configuration
- Key considerations for configuration:
 - T self-sufficiency
 - Maintainability, upgradeability, overall flexibility
 - Key components: coils, divertors, shields, blankets, ports
- Develop self-consistent assessment + configuration for use by community
- FY2013 progress:
 - Developing/comparing configurations with range of sizes: R=2.2, 1.6, 1.0m
 - Assessing impact of different divertors: conventional, snowflake, super-X
 - May be minimum device size required ($R \sim 1.5 1.6m$) for TBR > 1 with DCLL
 - Preliminary: breeding in divertor and/or centerstack first-wall/shield may be required

<u>Summary</u>: NSTX-U FY2013-15 research plan strongly supports FES 10-year vision elements

ITER research

– Leading contributions to non-linear AE* dynamics, fast-ion transport, disruption warning, response to 3D δ B, RWM control

Control science, plasma-wall interactions, FNSF

- Prepare NSTX-U to extend high-β + high-non-inductive scenarios to full non-inductive operation with advanced control
- Provide critical data on SOL-widths and turbulence, novel snowflake divertors, Li-based PFCs – all for high power density
- NSTX + Upgrade will provide critical confinement, stability, and sustainment data for assessing ST as potential FNSF

Validated predictive capability

- Will access new & unique high- β + low- ν^* regime, exploit wide variation of rotation, q, fast-ion drive to test leading models

Incremental funding needed to fully utilize NSTX-U capabilities during FY15

Backup Slides

FES 10 year vision elements for U.S. fusion research

Where we need to be in 10 years, in MFE

- Elements of a vision for 2021:
 - ITER Research The U.S. has a strong research team hitting the ground on a completed ITER project in Cadarache. This team is capable of asserting world leadership in burning plasma science
 - **Fusion materials science** The U.S. has made strides in fusion materials science and passed critical metrics in tokamak and ST operations with national research teams. It is prepared to move beyond conceptual design of a fusion nuclear science facility
 - Extend the reach of plasma control science and plasma-wall interactions- U.S. fusion research has successfully levered international research opportunities in long pulse plasma control science, plasma-wall interactions, and 3-D physics.
 - Validated predictive capability- The U.S. is a world leader in integrated computation, validated by experiments at universities and labs. Such computation should be transformational, as it must reduce the risks associated with fusion development steps

Update and Outlook for the Fusion Energy Sciences

E.J. Synakowski Associate Director, Office of Science Fusion Energy Sciences

For the University Fusion Associates Town Hall Meeting APS-DPP, Providence, RI October 29, 2012

STs and planned NSTX-U program support and accelerate wide range of development paths toward fusion energy

 Extend Predictive Capability -Non-linear Alfvén modes, fast-ion dynamics –Electron gyro-scale turbulence at low v^* -High β , rotation, shaping, for MHD, transport

STs Narrow Gaps to Pilot/DEMO:

- Goal: 100% non-inductive + high β
- Plasma-Material Interface Research
 - -Strong heating + smaller $R \rightarrow high P/R$, P/S
 - Novel solutions: snowflake, liquid metals, Super-X (MAST-U), hot high-Z walls (QUEST)
- Fusion Nuclear Science Facility
- High neutron wall loading
 Potentially smaller size, cost
 Smaller T consumption
 Accessible / maintainable

(D) NSTX-U

Fusion Nuclear Science Facility

FNSF-AT

VULCAN

Pilot Plant or **DEMO**

ARIES-ST

ARIES-AT

ARIES-CS

NHTX

NSTX Upgrade will address critical plasma confinement and sustainment questions by exploiting 2 new capabilities

🔘 NSTX-U

FES BPM for FY2015 FWP – NSTX-U Program

NSTX Upgrade will access next factor of two increase in performance to bridge gaps to next-step STs

Plasma

Material

Interface

Facility

1.0

≥ **1.8**

3 - 4

2

30 - 50

30 - 50

0.7 - 1.2

NSTX

0.86

> 1.3

1

0.5

≤ 8

10

0.2

NSTX

Upgrade

0.94

≥1.5

2

≤ 19*

20

0.4-0.6

Fusion

Nuclear

Science

Facility

1.3

> 1.5

4 - 10

2 - 3

22 - 45

30 - 60

0.6 - 1.2

1 - 2

Pilot

Plant

1.6 - 2.2

> 1 7

11 - 18

2.4 - 3

50 - 85

70 - 90

0.7 - 0.9

2 - 10

Low-A Power Plants

ARIES-ST (A=1.6)

VECTOR (A=2.3)

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

Key issues to resolve for next-step STs

Parameter

Major Radius R₀ [m]

Plasma Current [MA]

Auxiliary Power [MW]

Aspect Ratio R_0/a

Toroidal Field [T]

P/R [MW/m]

P/S [MW/m²]

Fusion Gain Q

- Non-inductive start-up, ramp-up, sustainment
- Confinement scaling (esp. electron transport)
- Stability and steady-state control
- Divertor solutions for mitigating high heat flux

🔘 NSTX-U

5 year plan goal: access performance levels of next-steps, approach Pilot-Plant regimes

Requirements for tokamak / ST next-steps:

• Full non-inductive (NI) current drive for steady-state operation

- ST requires NI start-up/ramp-up

- High confinement to minimize auxiliary heating, device size
- Sustained high β to minimize magnet size, forces, power
- Divertor/first-wall survival with intense power/particle fluxes

Non-inductive ramp-up from ~0.4MA to ~1MA projected to be possible with new CS + more tangential 2nd NBI

- More tangential NBI provides 3-4x higher CD at low I_P:
 - -2x higher absorption (40 \rightarrow 80%) at low I_P = 0.4MA
 - Now modeling coupling to 0.2-0.3MA (TRANSP)
 - 1.5-2x higher current drive efficiency

(D) NSTX-U

- TSC simulation of non-inductive rampup from initial CHI target
 - Simulations now being improved to use TRANSP/NUBEAM loop within TSC
 - Experimental challenges:
 - Maximum NBI power in low I_i CHI plasma

R. Raman, F. Poli, C.E. Kessel, S.C. Jardin

5 year plan tools with 5YP base funding (FY2012 + 2.5% inflation)

🔘 NSTX-U

NSTX-U internal component staging supports goal to assess compatibility of high τ_E and β + 100% NICD with metallic PFCs

Base budget case

Nominal 2014-18 5 year plan steps for implementation of cryo-pump + high-Z PFCs + LLD

🔘 NSTX-U

NSTX-U internal component staging supports goal to assess compatibility of high τ_E and β + 100% NICD with metallic PFCs

