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* My Background/History

— Coating Flows and Instabilities

* Current Research:
— Solar Coatings and Device Fabrication
— Energy Systems and Electric Vehicles
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My Background/History

« MIT BS and PhD — Si1C ceramics, point
defects and diffusion studies, phase
equilibrium calcs

* University of Arizona — Lithium Niobate
defects, diffusion, ferroelectric thin films,
sol-gel coating solution chemistry, spin
coating, solar racing car team

« 2004: Rutgers — emphasis on solar coatings
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Schematic Coater Cross-Section
from US Patent 6,708,701
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Striations 1n Sol-Gel

P/ZT

Dunbar P. Birnie, ITT --- U.of Arizona
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Schematic View
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D. P. Birnie, III, “Rational Solvent Selection

&JTG E RS Strategies to Combat Striation Formation during Coating Quality

Spin Coating of Thin Films”, J. Materials Research Gl’Ollp
Research, 16 (4), 1145-54 (2001)
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[.aser Diffraction
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Measurement of Thickness Evolution
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D. P. Birnie, III and Manuel Manley, "Combined
Flow and Evaporation of Fluid on a Spinning
Disk", Physics of Fluids, 9, 870-875 (1997)
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Solvent Slopes
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Other Coating Quality Studies

e Understanding How Coatings
Form

* Analysis of Coating Defects

— Unintended Thickness
Variations " ]

> Ar

— Roughness Assessment
Volume of annulus = 2 7rArh;

() Coating SOIUtiOn Chemistry Mass in-flow rate: Wy, = p2mrhv(r)
Studies — Surface Tension Effects 2000 koM

* Nanoparticle Containing Coatings
» Coatings Applications Areas
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* My Background/History

— Coating Flows and Instabilities

* Current Research:
— Solar Coatings and Device Fabrication

— Energy Systems and Electric Vehicles
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Self-assembled polystyrene

x10000
#12405
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Templated TiO, Network

Nanostructured TiO, films with
controllable porosity and pore size.

Ave. Brunauer -Emmett-Teller (BET)
Sample g?z';* S -
pec. surf. Roughness Porosity
('m)  area (mzlg) factor (/um) (%)
A 1000 33.2 53.7 61.5
B 600 60.1 69 .7
C 300 119.1 148 .1 70.4
D 160 137.2 a97.1> 65.8

Ultra-porous TiO, films
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Prototype nanostructure

Templated TiO, nanoparticles
(Degussa, P25)

| Pure P25 film

<— Typical
templated P25
films with very
few cracking
and good
adhesion.
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Dual-porosity P25 film
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J. Am. Ceram. Soc., 11 [H] | -5 (2009)
DOL: 10.1111§.1551-2916.2009.02970 .x
) 2009 The American Ceramic Soaety

Journal.

Dye-Sensitized Solar Cells Based on TiO, Coatings with Dual

Size-Scale Porosity

Lai Qi, Judith D. Sorge.” and Dunbar P. Birnie I1I

Department of Materials Science and Engineering, Rutgers University, Piscataway, New Jersey

Dye-sensitized solar cells with efficiencies greater than 4% were
produced with templated “inverse opal™ titania coatings. A novel
one-step method produces uniform and crack-free coatings made
using commercially available titania nanoparticles with high re-
producibility and uniformity. In this research, a volatile solvent
electrolyte was tested: however, it shows proof-of-concept that
larger pore volumes can be created for increased penetration of
more viscous electrolytes that can be utilized in high-efficiency
cells. This dual size-scale porosity film is a promising structure
for DSC applications, especially for those solid-state or quasi-
solid-state cells that require polymer electrolytes.

I. Introduction

DSCs’ are photoelectrochemical cells based on sensitized semi-
conductor—electrolyte interfaces,'” which were first introduced

i 1NN fniaAd hnvia Arnvnnsmntandad thha hinahant Aall AfRAlncne: an Fam

surface area also allows for a greater possibility of recombina-
tion between the electrolyte and the titania layer. If a titania
partide is not covered in dye and an injected electron passes
back to the electrolyte instead of through to the back electrode,
current loss isencountered. A similar balance is observed for the
pore volume as more pores allow the electrolyte to reach every
dye molecule, which is necessary for sustained high current, but
this can lead, again, to greater recombination between the elec-
trolyte and the titania layer.

It has been shown that the optimized TiO» film geometric
structure is that of mesoporous channels aligned in parallel to
each other and perpendicular to the electrode substrate.'™'' A
good model for this concept is organized TiO, nanorod or
nanowire arrays aligned perpendicular to the transparent con-
ducting oxide (TCO) substrate, which can be produced by a sol-
gel method with a template or in an oxidizing environment.'>'*
However, aligning the nanorods/wires into an organized struc-
ture on ton of a TCO substrate rather than on onaane metal
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Materials Science and Engineering

at Rutgers University

= Microstructure Comparison

Non templated titania 20% enfulsion templated 40% emulsion templated

Dual Porosity — Macro and Meso Pores
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Porosimetry
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I-V Characteristics

I(mA)

06 1 —=—Non-Templated
0.4 1 _wg20% emulsion templated
0'20 1|4 —40% Emulsion templated
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
V(v)
Photo Current Photo voltage Fill Efficiency Thickness
Cell (mA) (mV) Factor (%) (micron)
Non templated 0.96 0.68 0.74 217 17
20% emulsion templated 1.93 0.7 0.69 417 20
Sk ,/o emylsion templated 1.49 0.64 0.67 2.86 Co#ting Quality
%‘ I'\U 1 UEKD Research Group
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Solar Car Racing Experience

1997 1998 1999 2000 2001 2002 2003

Daedalus
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Journal of Power Sources 186 (2009) 539-542

Contents lists available at ScienceDiract

Journal of Power Sources

Fl SFVIER journal homepage: www.elsevier.com/locate/jpowsour

Short communication
Solar-to-vehicle (S2V) systems for powering commuters of the future

Dunbar P. Birnie I1I*
Department of Materials Saence and Engineering Rutgers University, Piscataway, NJ 08854-8065, United States

ARTICLE INFO ABSTRACT

Article history: Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices
Received 14 August 2008 continue to rise. Consumers are also increasingly aware of their carbon “footprint”™ and seek ways of
Accepeed 27 September 2008 lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in

Piaiie ape 1 Octolees 200 helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode,

though most plug-in scenarios ultimately rely on having the electric utilitses converted from fossil sources

’S(;;"""d’: to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric

H gl 2 vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present
ybrid electric vehicles z > : 3 ? 3 Z

Plug-in hybrids analysis considers a further advancement: the impact of daytime recharging using solar arrays located at

Commuter vehicles commuters’ work sites. This would convert large parking areas into solar recharge stations for commuters.

The solar power would be large enough to supply many commuters’ needs. The implications for electric
car design in relation to commuter range are discussed in detail.
© 2008 Elsevier BV. All rights reserved.

1. Introduction “regenerative braking” that then recoups some of the car's motional
energy and recharges the battery a bit every time you hit the brakes
Recent discussions of climate change have focused on anthro- instead of the normal frictional losses.
pogenic sources of carbon dioxide and the cumulative effect of these As soon as hybrid vehicles became available, hobbyists and
emissions that, over time, are expected to have grave impacts on electnc vehicle enthusiasts were quick to design custom conver— Quality
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Connections??

* Fluid flow, rivulet formation, instability,

etc.... Connection to liquid lithium curtain
flow?

* Dense ceramic fabrication to prevent
erosion 1n plasmas?

* Coatings to prevent interactions??
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