

Supported by

Scientific Goals, Mission, and Objectives

College W&M **Colorado Sch Mines** Columbia U Comp-X General Atomics INFI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U** Wisconsin

J.E. Menard, PPPL

For the NSTX Research Team NSTX Facility Review Director's Conference Room, PPPL July 30-31, 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U **loffe Inst RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

NSTX will make world-leading contributions to ST development and contribute strongly to ITER and fundamental toroidal science

Outline:

- NSTX Mission
- Unique Parameter Regimes Accessed by NSTX
 - Macroscopic Stability
 - Transport and Turbulence
 - Waves and Energetic Particles
 - Boundary Physics
 - Plasma Formation and Sustainment
- Next-step ST Missions
- Gaps Between Present and Next-step STs
- Upgrades and Understanding to Narrow Gaps
- Contributions to ITER and Tokamak Research
- Summary

NSTX Mission Elements for 2009-2013 (Prioritized)

- 1. Establish attractive ST operating scenarios & configurations
 - Long-term goal: Understand and utilize advantages of the ST configuration for addressing key gaps between ITER performance and the expected performance of DEMO (including an ST-DEMO)
- 2. Complement tokamak physics and support ITER
 - Exploit unique ST features to improve tokamak understanding
 - Contribute to ITER final design activities and research preparation
 - Participate strongly in ITPA and U.S. BPO, benefit from tokamak R&D
- 3. Understand unique physics properties of the ST
 - Understand impact of low A, very high β , high v_{fast} / v_A , ...
 - ST understanding underpins missions 1 and 2 above

2007 FESAC Priorities Panel prioritized issues for getting from ITER to DEMO ST can contribute to all FESAC Priority Panel "Themes"

ST expands knowledge-base for all aspects of Theme A

- A. Creating predictable high-performance steady-state plasmas -
 - Measurement
 - Integration of high-performance, steady-state, burning plasmas
 - Validated predictive modeling
 - Control
 - Off-normal plasma events
 - Plasma modification by auxiliary systems

 Magnets ST offers simplified, maintainable, affordable magnets for DEMO

- B. Taming the plasma material Interface (PMI)
 - Plasma wall interactions
 - Plasma facing components
 - RF antennas, launching structures, and other internal structures
- C. Harnessing fusion power
 - Fusion fuel cycle
 - Power extraction
 - Materials science in the fusion environment
 - Safety

ST offers high heat flux at small size and cost for PMI R&D

ST offers high neutron flux at small size and cost for testing fusion nuclear components

NSTX will make world-leading contributions to ST development and contribute strongly to ITER and fundamental toroidal science

NSTX Mission

- Unique Parameter Regimes Accessed by NSTX
 - Macroscopic Stability
 - Transport and Turbulence
 - Waves and Energetic Particles
 - Boundary Physics
 - Plasma Formation and Sustainment
- Next-step ST Missions
- Gaps Between Present and Next-step STs
- Upgrades and Understanding to Narrow Gaps
- Contributions to ITER and Tokamak Research
- Summary

NSTX creates high β plasmas, and is assessing if the ST can be used as a compact high-performance fusion reactor

ST accesses higher normalized current and higher normalized β
 → higher β_{Toroidal} = plasma pressure / toroidal magnetic field pressure
 → high plasma pressure with smaller magnets

NSTX is improving control of plasma instabilities to increase the duration of sustained high β

Increased plasma shaping from improved n=0 control for high κ and δ operation

+ $n \ge 1$ EF/RWM control = Duration of $\beta_T > 15\%$ increased factor of 4 from 2002 to 2008

NSTX has sustained β_T needed for ST-CTF for 4 current redistribution times

NSTX is utilizing unique diagnostics and plasma regimes to determine the modes responsible for electron transport

NSTX

0.40

NSTX is improving the understanding and performance of wave heating techniques for high- β (over-dense) plasmas

HHFW Antenna Array

- Twelve antennas
- Six 1 MW transmitters
- Real time phasing
- Top-fed
- Wave reflectometers
- Edge RF probes

- High-harmonic fast-wave (HHFW)
 - Discovered that surface waves reduce heating efficiency if density near antenna is too high
 - Control of edge density improves heating → record T_e = 5keV in NSTX achieved with HHFW

Fast-ions from NBI are used to simulate α -particles in ITER, and enable studies of fast-ion physics for next-step STs.

• NSTX neutral beam injection (NBI) used for heating, current drive, driving plasma rotation, and fast-ion physics studies

 NSTX studies the range of instabilities excited by the fast-ions, and the effects of the instabilities on the fast-ions

NSTX is unique in the world program in exploring lithium in a diverted H-mode plasma

- Dual Lithium evaporators (LITERs) provide complete toroidal coverage of lower divertor
 - Improved performance vs. 1 LITER
 - 2008: High-performance operation with NO between-shot He glow → increased shot-rate

- Reproducible ELM elimination from Li
 - Large reduction in divertor $D_{\alpha} \rightarrow$ reduced recycling
 - Plasma density reduced
 - Pulse-length extended
 - At 800kA, power must be reduced to avoid β limit
 - Confinement time doubled (up to 80ms)

NSTX is testing unique methods of non-solenoidal plasma current start-up and ramp-up for STs

- Coaxial Helicity Injection (CHI)
 - Apply voltage between inner and outer vacuum vessel - up to 1.7kV thus far
 - $J \times B$ force pushes plasma into vessel
 - Current reconnects, forms tokamak

- Coaxial Helicity Injection Performance:
 - Generated record closed-flux I_P=160kA
 - Demonstrated coupling to induction and compatibility with high performance H-mode
 - Higher I_P limited by lack of auxiliary heating, possibly impurities/divertor conditions
 - Will upgrade "magnetic insulation" at absorber
 - Will modify outboard divertor material (C \rightarrow Mo)

NSTX is developing sustained scenarios with a majority of the current driven non-inductively (i.e. w/o central solenoid)

Predicted and reconstructed current profiles are in agreement (for plasmas free of core instability activity)

NSTX will make world-leading contributions to ST development and contribute strongly to ITER and fundamental toroidal science

- NSTX Mission
- Unique Parameter Regimes Accessed by NSTX
 - Macroscopic Stability
 - Transport and Turbulence
 - Waves and Energetic Particles
 - Boundary Physics
 - Plasma Formation and Sustainment
- Next-step ST Missions
- Gaps Between Present and Next-step STs
- Upgrades and Understanding to Narrow Gaps
- Contributions to ITER and Tokamak Research
- Summary

ST is attractive configuration for "Taming the plasma-material interface"

• FESAC-PP identified PMI issue as highest priority: "...solutions needed for DEMO not in hand, ...require major extrapolation and substantial development"

Scientific mission of National High-power advanced Torus eXperiment (NHTX): *"Integration of a fusion-relevant plasma-material interface with stable sustained high-performance plasma operation"*

PMI research and integration goals:

- Create/study DEMO-relevant heat-fluxes
- Perform rapid testing of new PMI concepts
 - Liquid metals, X-divertor, Super-X divertor
- PMI research at DEMO-relevant $T_{wall} \sim 600^\circ C$
- Plasma-wall equilibration: τ_{pulse} = 200-1000s
- Develop methods to avoid T retention
- Demonstrate compatibility of PMI solutions with high plasma performance:
 - High confinement without ELMs
 - High beta without disruptions
 - Steady-state, fully non-inductive
- Study high $\beta_{\text{N}}\text{, }f_{\text{BS}}$ for ST-DEMO and ST-CTF
- Test start-up/ramp-up for ST-CTF and ST-DEMO

<u>National High-power advanced</u> <u>Torus eXperiment (NHTX)</u>

Baseline operating scenario:

P _{heat}	50MW
R ₀	1m
А	1.8-2
κ	≤ 3
Вт	2T
I _P	3-3.5MA
β _N	4.5
βτ	14%
n _e /n _{GW}	0.4-0.5
f _{BS}	$\approx 70\%$
f _{NICD}	100%
H _{98Y,2}	≤ 1.3
E _{NB}	110keV
P/R	50MW/m
Solenoid	$\frac{1}{2}$ swing to full I _P

ST-based Component Test Facility (ST-CTF) is attractive concept for "Harnessing Fusion Power"

ST-CTF Required Conditions:

		<u> </u>	
Performance metrics	ITER	Required Conditions	Demo Goals
Continuous operation	~hour	weeks	~months
14-MeV neutron flux on module (MW/m ²)	~0.8	1.0-2.0	~3
Total neutron fluence goal (MW-yr/m ²)	~0.3	6	~6-15
Duty factor goal	~1%	30%	~80%
Tritium self-sufficiency goal (%)	~0	~100	≥100

From M. Peng APS-2007, based on NCT presentation to FESAC 8/7/2007

W _L [MW/m ²]	0.1	2.0			
R0 [m]	1.20				
А	1.50				
kappa		3.07			
qcyl	4.6	4.6 3.7 3.			
Bt [T]	1.13	2.18			
lp [MA]	3.4	8.2	10.1		
Beta_N	3	3.8 5.			
Beta_T	0.14	0.14 0.18			
n _e [10 ²⁰ /m ³]	0.43	0.43 1.05			
f _{BS}	0.58	0.58 0.49			
T _{avgi} [keV]	5.4	5.4 10.3			
T _{avge} [keV]	3.1	3.1 6.8			
HH98		1.5			
Q	0.50	0.50 2.5 3			
P _{aux-CD} [MW]	15	15 31			
E _{NB} [keV]	100	100 239			
P _{Fusion} [MW]	7.5	7.5 75 15			
T M height [m]		1.64			
T M area [m²]		14			
Blanket A [m ²]	66				
F _{n-capture}		0.76			
P/R [MW/m]	14	38	61		
Solenoid	lror solen	Iron core or MIC solenoid for startup			

ST advantages for CTF:

- Compact device, high β
 - Reduced device cost
 - Reduced operating cost (P_{electric})
 - Reduced T consumption
- Simplified vessel and magnets
 - Fully modularized core components
 - Fully remote assembly/disassembly

ST-based Component Test Facility (ST-CTF)

1. Increase and understand beam-driven current lower $n_e^{},\,\nu^{\star}$

 \rightarrow Test increased NBI-CD with density reduction, higher T_e, higher NBI power

- 2. Increase and understand H-mode confinement at low v^* \rightarrow Determine modes responsible for transport, determine scaling vs. B_T , I_P , P_{HEAT}
- 3. Demonstrate and understand non-inductive start-up and ramp-up
 → Increase ramp-up heating power & current drive to test I_P ramp-up techniques
- 4. Sustain β_N and understand MHD near and above no-wall limit \rightarrow Improve control of β , RWM/EF, rotation and q profiles to optimize stability

2009-10 upgrades will enable unique and exciting research in support of 3 highest priority research goals

 Reduce electron density using <u>*liquid*</u> lithium, improve understanding of how Li improves confinement and reduces/eliminates ELMs

→Implement liquid lithium divertor (LLD)

2. Measure full wave-number spectrum of turbulence to determine modes responsible for anomalous transport

→ Implement BES to complement existing high-k scattering diagnostic

Asses if higher power HHFW can ramp-up I_P in H-mode (BS+RF overdrive) and heat high-β_N NBI H-mode scenarios
 → Upgrade HHFW system for higher P_{RF} + ELM resilience

Proposed Second Desired RF

Ground

Present RF Ground

Upgrade for FY12 (FY11) : New center stack for 1T, 2MA, 5s will expand understanding and performance of ST plasmas

• Increase B_T and I_P to access higher temperature, lower collisionality plasma

• Improve understanding of transport and turbulence:

- Assess if electron $\tau_{E} \sim B_{T}$ is result of low B_{T} , high β , suppressed ion transport, other
- Assess ion turbulence scaling as field increases, neoclassical transport decrease

•Assess heating, start-up, ramp-up closer to parameters of next-step STs:

- NBI v_{fast} / v_{Alfvén} lower \rightarrow fast-ion instability drive modified/reduced
- HHFW surface waves reduced \rightarrow improved power coupling
- Higher B_T, T_e aids plasma start-up (Coaxial Helicity Injection, plasma guns, PF)

2^{nd} NBI in FY14 (FY13) will support long-pulse (5s) fully non-inductive scenarios at high power at full TF (B_T = 1T)

2nd NBI can double max. power or double duration at fixed power
 NBI duration 5s for 80kV → 5MW total per NBI, ~2s limit for ~7MW

Example of NSTX contribution to ITER physics basis:

•MHD: ST has faster current quench rate during a current disruption

- Reduced normalized external inductance of ST explains difference in I_P quench-rate
- Implies tokamaks & STs have similar $T_{\rm e}$ during $I_{\rm P}$ quench phase
 - Consistent with impurity radiation dominating dissipation of plasma inductive energy

Pre-Disruption Current Density (MA/m²)

Summary: NSTX will lead the U.S. effort to assess the properties and potential advantages of the ST for fusion

- NSTX will address important questions for ST and fusion science:
 - Can high normalized pressure be sustained with high reliability?
 - What are underlying modes and scalings of anomalous transport?
 - How does large fast-ion content influence Alfvénic MHD & fast-ion loss?
 - Can steady-state & transient edge heat fluxes be understood and controlled?
 - Is liquid Li attractive for taming the plasma-material interface?
 - Are fully non-inductive high-performance scenarios achievable in the ST?
 - Can a next-step ST operate solenoid-free with high confidence?
- Upgrades will greatly expand the scientific capabilities of NSTX to:
 - Access and understand impact of reduced collisionality on ST physics
 - Achievable through density reduction, higher $B_{T},\,I_{P},\,power$
 - Impacts all topical science areas
 - Access and understand impact of varied NBI deposition profile
 - Achievable through implementation of 2nd NBI
 - Impacts heating, rotation, current profiles, f(v) for fast-ion MHD
 - · Access fully non-inductive operation and sustain it
- NSTX research will strongly address key gaps for next-step STs

Performance gaps between present and next-step STs

For NHTX, ST-CTF scenarios:reduce n_e , increase NBI-CD, confinement, start-up/ramp-upFor ST-DEMO scenarios:increase elongation, β_N , f_{BS} , confinement, start-up/ramp-up

Present high $\beta_N \& f_{NICI}$, NSTX	NSTX-U	NHTX	ST-CTF	ST-DEMO		
Α	1.53	1.65	1.8	1.5	1.6		
κ	2.6-2.7	2.6-2.8	2.8	3.1	3.7		
β _T [%]	14	10-16	12-16	18-28	50		
β _N [%-mT/MA]	5.7	5.1-6.2	4.5-5	4-6	7.5		
f _{NICD}	0.65	1.0	1.0	1.0	1.0		
f _{BS+PS+Diam}	0.54	0.6-0.8	0.65-0.75	0.45-0.5	0.99		
f _{NBI-CD}	0.11	0.2-0.4	0.25-0.35	0.5-0.55	0.01		
f Greenwald	0.8-1.0	0.6-0.8	0.4-0.5	0.25-0.3	0.8		
H _{98y2}	1.1	1.15-1.25	1.3	1.5	1.3		
Dimensional/Device Parameters:							
Solenoid Capability	Ramp+flat-top	Ramp+flat-top	Ramp to full I _P	No/partial	No		
I _P [MA]	0.72	1.0	3-3.5	8-10	28		
Β _τ [T]	0.52	0.75-1.0	2.0	2.5	2.1		
R_0 [m]	0.86	0.92	1.0	1.2	3.2		
a [m]	0.56	0.56	0.55	0.8	2.0		
I _P /aB _{T0} [MA/mT]	2.5	1.8-2.4	2.7-3.2	4-5	6.7		

Near-term highest priority is to assess proposed ST-CTF operating scenarios

Extrapolation from NSTX to ST-CTF is 2 orders of magnitude in v_e^* , factor of 1.4 in H₉₈, factor of 1-2 in ρ^*

- Collisionality dependence of ST confinement not yet understood
- $H_{98} = 1.5 \rightarrow 1$ implies factor of 3 increase in required heating power

Upgraded NSTX will access \geq factor of 4 lower v^{*} by increasing pumping, B_T, I_P, P_{HEAT}

Device	R₀/a	R ₀	B _{T0}	β _N	P _{HEAT}	P _{NBI}	f _{NICD}
NSTX	1.5	0.86m	0.45T	5.8	6 MW	6 MW	50-70%
NSTX-U	1.6	0.92m	1.0T	5.0	14 MW	10 MW	50-100%
NHTX	1.8	1.00m	2.0T	4.5-5	50 MW	30 MW	100%
ST-CTF	1.5	1.20m	2.5T	3.5-4	65 MW	30 MW	100%

NSTX participation in International Tokamak Physics Activity (ITPA) benefits both ST and tokamak/ITER research

NSTX actively involved in 17 joint experiments ITPA experiments receive increased run priority

Macroscopic stability

- MDC-2 Joint experiments on resistive wall mode physics
- MDC-3 Joint experiments on neoclassical tearing modes including error field effects
- MDC-12 Non-resonant magnetic braking
- MDC-13: NTM stability at low rotation

Transport and Turbulence

- CDB-2 Confinement scaling in ELMy H-modes: β degradation
- CDB-6 Improving the condition of global ELMy H-mode and pedestal databases: Low A
- CDB-9 Density profiles at low collisionality
- TP-6.3 NBI-driven momentum transport study
- TP-9 H-mode aspect ratio comparison

Wave Particle Interactions

MDC-11 Fast ion losses and redistribution from localized Alfvén Eigenmodes

Boundary Physics

- PEP-6 Pedestal structure and ELM stability in DN
- PEP-9 NSTX/MAST/DIII-D pedestal similarity
- PEP-16 C-MOD/NSTX/MAST small ELM regime comparison
- DSOL-15 Inter-machine comparison of blob characteristics
- DSOL-17 Cross-machine comparison of pulse-by-pulse deposition

Advanced Scenarios and Control

- SSO-2.2 MHD in hybrid scenarios and effects on q-profile
- MDC-14: Vertical Stability Physics and Performance Limits in Tokamaks with Highly Elongated Plasmas

NSTX is actively engaged in ITER design activities

